File size: 8,496 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0883aa1
df2accb
0883aa1
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0883aa1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os
import glob
from tqdm import tqdm
import json
import torch
import time

from models.svc.diffusion.diffusion_inference import DiffusionInference
from models.svc.comosvc.comosvc_inference import ComoSVCInference
from models.svc.transformer.transformer_inference import TransformerInference
from utils.util import load_config
from utils.audio_slicer import split_audio, merge_segments_encodec
from processors import acoustic_extractor, content_extractor


def build_inference(args, cfg, infer_type="from_dataset"):
    supported_inference = {
        "DiffWaveNetSVC": DiffusionInference,
        "DiffComoSVC": ComoSVCInference,
        "TransformerSVC": TransformerInference,
    }

    inference_class = supported_inference[cfg.model_type]
    return inference_class(args, cfg, infer_type)


def prepare_for_audio_file(args, cfg, num_workers=1):
    preprocess_path = cfg.preprocess.processed_dir
    audio_name = cfg.inference.source_audio_name
    temp_audio_dir = os.path.join(preprocess_path, audio_name)

    ### eval file
    t = time.time()
    eval_file = prepare_source_eval_file(cfg, temp_audio_dir, audio_name)
    args.source = eval_file
    with open(eval_file, "r") as f:
        metadata = json.load(f)
    print("Prepare for meta eval data: {:.1f}s".format(time.time() - t))

    ### acoustic features
    t = time.time()
    acoustic_extractor.extract_utt_acoustic_features_serial(
        metadata, temp_audio_dir, cfg
    )
    acoustic_extractor.cal_mel_min_max(
        dataset=audio_name, output_path=preprocess_path, cfg=cfg, metadata=metadata
    )
    acoustic_extractor.cal_pitch_statistics_svc(
        dataset=audio_name, output_path=preprocess_path, cfg=cfg, metadata=metadata
    )
    print("Prepare for acoustic features: {:.1f}s".format(time.time() - t))

    ### content features
    t = time.time()
    content_extractor.extract_utt_content_features_dataloader(
        cfg, metadata, num_workers
    )
    print("Prepare for content features: {:.1f}s".format(time.time() - t))
    return args, cfg, temp_audio_dir


def merge_for_audio_segments(audio_files, args, cfg):
    audio_name = cfg.inference.source_audio_name
    target_singer_name = args.target_singer

    merge_segments_encodec(
        wav_files=audio_files,
        fs=cfg.preprocess.sample_rate,
        output_path=os.path.join(
            args.output_dir, "{}_{}.wav".format(audio_name, target_singer_name)
        ),
        overlap_duration=cfg.inference.segments_overlap_duration,
    )

    for tmp_file in audio_files:
        os.remove(tmp_file)


def prepare_source_eval_file(cfg, temp_audio_dir, audio_name):
    """
    Prepare the eval file (json) for an audio
    """

    audio_chunks_results = split_audio(
        wav_file=cfg.inference.source_audio_path,
        target_sr=cfg.preprocess.sample_rate,
        output_dir=os.path.join(temp_audio_dir, "wavs"),
        max_duration_of_segment=cfg.inference.segments_max_duration,
        overlap_duration=cfg.inference.segments_overlap_duration,
    )

    metadata = []
    for i, res in enumerate(audio_chunks_results):
        res["index"] = i
        res["Dataset"] = audio_name
        res["Singer"] = audio_name
        res["Uid"] = "{}_{}".format(audio_name, res["Uid"])
        metadata.append(res)

    eval_file = os.path.join(temp_audio_dir, "eval.json")
    with open(eval_file, "w") as f:
        json.dump(metadata, f, indent=4, ensure_ascii=False, sort_keys=True)

    return eval_file


def cuda_relevant(deterministic=False):
    torch.cuda.empty_cache()
    # TF32 on Ampere and above
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.allow_tf32 = True
    # Deterministic
    torch.backends.cudnn.deterministic = deterministic
    torch.backends.cudnn.benchmark = not deterministic
    torch.use_deterministic_algorithms(deterministic)


def infer(args, cfg, infer_type):
    # Build inference
    t = time.time()
    trainer = build_inference(args, cfg, infer_type)
    print("Model Init: {:.1f}s".format(time.time() - t))

    # Run inference
    t = time.time()
    output_audio_files = trainer.inference()
    print("Model inference: {:.1f}s".format(time.time() - t))
    return output_audio_files


def build_parser():
    r"""Build argument parser for inference.py.
    Anything else should be put in an extra config YAML file.
    """

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="JSON/YAML file for configurations.",
    )
    parser.add_argument(
        "--acoustics_dir",
        type=str,
        help="Acoustics model checkpoint directory. If a directory is given, "
        "search for the latest checkpoint dir in the directory. If a specific "
        "checkpoint dir is given, directly load the checkpoint.",
    )
    parser.add_argument(
        "--vocoder_dir",
        type=str,
        required=True,
        help="Vocoder checkpoint directory. Searching behavior is the same as "
        "the acoustics one.",
    )
    parser.add_argument(
        "--target_singer",
        type=str,
        required=True,
        help="convert to a specific singer (e.g. --target_singers singer_id).",
    )
    parser.add_argument(
        "--trans_key",
        default=0,
        help="0: no pitch shift; autoshift: pitch shift;  int: key shift.",
    )
    parser.add_argument(
        "--source",
        type=str,
        default="source_audio",
        help="Source audio file or directory. If a JSON file is given, "
        "inference from dataset is applied. If a directory is given, "
        "inference from all wav/flac/mp3 audio files in the directory is applied. "
        "Default: inference from all wav/flac/mp3 audio files in ./source_audio",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="conversion_results",
        help="Output directory. Default: ./conversion_results",
    )
    parser.add_argument(
        "--log_level",
        type=str,
        default="warning",
        help="Logging level. Default: warning",
    )
    parser.add_argument(
        "--keep_cache",
        action="store_true",
        default=True,
        help="Keep cache files. Only applicable to inference from files.",
    )
    parser.add_argument(
        "--diffusion_inference_steps",
        type=int,
        default=1000,
        help="Number of inference steps. Only applicable to diffusion inference.",
    )
    return parser


def main(args_list):
    ### Parse arguments and config
    args = build_parser().parse_args(args_list)
    cfg = load_config(args.config)

    # CUDA settings
    cuda_relevant()

    if os.path.isdir(args.source):
        ### Infer from file

        # Get all the source audio files (.wav, .flac, .mp3)
        source_audio_dir = args.source
        audio_list = []
        for suffix in ["wav", "flac", "mp3"]:
            audio_list += glob.glob(
                os.path.join(source_audio_dir, "**/*.{}".format(suffix)), recursive=True
            )
        print("There are {} source audios: ".format(len(audio_list)))

        # Infer for every file as dataset
        output_root_path = args.output_dir
        for audio_path in tqdm(audio_list):
            audio_name = audio_path.split("/")[-1].split(".")[0]
            args.output_dir = os.path.join(output_root_path, audio_name)
            print("\n{}\nConversion for {}...\n".format("*" * 10, audio_name))

            cfg.inference.source_audio_path = audio_path
            cfg.inference.source_audio_name = audio_name
            cfg.inference.segments_max_duration = 10.0
            cfg.inference.segments_overlap_duration = 1.0

            # Prepare metadata and features
            args, cfg, cache_dir = prepare_for_audio_file(args, cfg)

            # Infer from file
            output_audio_files = infer(args, cfg, infer_type="from_file")

            # Merge the split segments
            merge_for_audio_segments(output_audio_files, args, cfg)

            # Keep or remove caches
            if not args.keep_cache:
                os.removedirs(cache_dir)

    else:
        ### Infer from dataset
        infer(args, cfg, infer_type="from_dataset")


if __name__ == "__main__":
    main()