File size: 20,323 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import collections
import glob
import os
import random
import time
import argparse
from collections import OrderedDict

import json5
import numpy as np
import glob
from torch.nn import functional as F


try:
    from ruamel.yaml import YAML as yaml
except:
    from ruamel_yaml import YAML as yaml

import torch

from utils.hparam import HParams
import logging
from logging import handlers


def str2bool(v):
    """Used in argparse.ArgumentParser.add_argument to indicate
    that a type is a bool type and user can enter

        - yes, true, t, y, 1, to represent True
        - no, false, f, n, 0, to represent False

    See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse  # noqa
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def find_checkpoint_of_mapper(mapper_ckpt_dir):
    mapper_ckpts = glob.glob(os.path.join(mapper_ckpt_dir, "ckpts/*.pt"))

    # Select the max steps
    mapper_ckpts.sort()
    mapper_weights_file = mapper_ckpts[-1]
    return mapper_weights_file


def pad_f0_to_tensors(f0s, batched=None):
    # Initialize
    tensors = []

    if batched == None:
        # Get the max frame for padding
        size = -1
        for f0 in f0s:
            size = max(size, f0.shape[-1])

        tensor = torch.zeros(len(f0s), size)

        for i, f0 in enumerate(f0s):
            tensor[i, : f0.shape[-1]] = f0[:]

        tensors.append(tensor)
    else:
        start = 0
        while start + batched - 1 < len(f0s):
            end = start + batched - 1

            # Get the max frame for padding
            size = -1
            for i in range(start, end + 1):
                size = max(size, f0s[i].shape[-1])

            tensor = torch.zeros(batched, size)

            for i in range(start, end + 1):
                tensor[i - start, : f0s[i].shape[-1]] = f0s[i][:]

            tensors.append(tensor)

            start = start + batched

        if start != len(f0s):
            end = len(f0s)

            # Get the max frame for padding
            size = -1
            for i in range(start, end):
                size = max(size, f0s[i].shape[-1])

            tensor = torch.zeros(len(f0s) - start, size)

            for i in range(start, end):
                tensor[i - start, : f0s[i].shape[-1]] = f0s[i][:]

            tensors.append(tensor)

    return tensors


def pad_mels_to_tensors(mels, batched=None):
    """
    Args:
        mels: A list of mel-specs
    Returns:
        tensors: A list of tensors containing the batched mel-specs
        mel_frames: A list of tensors containing the frames of the original mel-specs
    """
    # Initialize
    tensors = []
    mel_frames = []

    # Split mel-specs into batches to avoid cuda memory exceed
    if batched == None:
        # Get the max frame for padding
        size = -1
        for mel in mels:
            size = max(size, mel.shape[-1])

        tensor = torch.zeros(len(mels), mels[0].shape[0], size)
        mel_frame = torch.zeros(len(mels), dtype=torch.int32)

        for i, mel in enumerate(mels):
            tensor[i, :, : mel.shape[-1]] = mel[:]
            mel_frame[i] = mel.shape[-1]

        tensors.append(tensor)
        mel_frames.append(mel_frame)
    else:
        start = 0
        while start + batched - 1 < len(mels):
            end = start + batched - 1

            # Get the max frame for padding
            size = -1
            for i in range(start, end + 1):
                size = max(size, mels[i].shape[-1])

            tensor = torch.zeros(batched, mels[0].shape[0], size)
            mel_frame = torch.zeros(batched, dtype=torch.int32)

            for i in range(start, end + 1):
                tensor[i - start, :, : mels[i].shape[-1]] = mels[i][:]
                mel_frame[i - start] = mels[i].shape[-1]

            tensors.append(tensor)
            mel_frames.append(mel_frame)

            start = start + batched

        if start != len(mels):
            end = len(mels)

            # Get the max frame for padding
            size = -1
            for i in range(start, end):
                size = max(size, mels[i].shape[-1])

            tensor = torch.zeros(len(mels) - start, mels[0].shape[0], size)
            mel_frame = torch.zeros(len(mels) - start, dtype=torch.int32)

            for i in range(start, end):
                tensor[i - start, :, : mels[i].shape[-1]] = mels[i][:]
                mel_frame[i - start] = mels[i].shape[-1]

            tensors.append(tensor)
            mel_frames.append(mel_frame)

    return tensors, mel_frames


def load_model_config(args):
    """Load model configurations (in args.json under checkpoint directory)

    Args:
        args (ArgumentParser): arguments to run bins/preprocess.py

    Returns:
        dict: dictionary that stores model configurations
    """
    if args.checkpoint_dir is None:
        assert args.checkpoint_file is not None
        checkpoint_dir = os.path.split(args.checkpoint_file)[0]
    else:
        checkpoint_dir = args.checkpoint_dir
    config_path = os.path.join(checkpoint_dir, "args.json")
    print("config_path: ", config_path)

    config = load_config(config_path)
    return config


def remove_and_create(dir):
    if os.path.exists(dir):
        os.system("rm -r {}".format(dir))
    os.makedirs(dir, exist_ok=True)


def has_existed(path, warning=False):
    if not warning:
        return os.path.exists(path)

    if os.path.exists(path):
        answer = input(
            "The path {} has existed. \nInput 'y' (or hit Enter) to skip it, and input 'n' to re-write it [y/n]\n".format(
                path
            )
        )
        if not answer == "n":
            return True

    return False


def remove_older_ckpt(saved_model_name, checkpoint_dir, max_to_keep=5):
    if os.path.exists(os.path.join(checkpoint_dir, "checkpoint")):
        with open(os.path.join(checkpoint_dir, "checkpoint"), "r") as f:
            ckpts = [x.strip() for x in f.readlines()]
    else:
        ckpts = []
    ckpts.append(saved_model_name)
    for item in ckpts[:-max_to_keep]:
        if os.path.exists(os.path.join(checkpoint_dir, item)):
            os.remove(os.path.join(checkpoint_dir, item))
    with open(os.path.join(checkpoint_dir, "checkpoint"), "w") as f:
        for item in ckpts[-max_to_keep:]:
            f.write("{}\n".format(item))


def set_all_random_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.random.manual_seed(seed)


def save_checkpoint(
    args,
    generator,
    g_optimizer,
    step,
    discriminator=None,
    d_optimizer=None,
    max_to_keep=5,
):
    saved_model_name = "model.ckpt-{}.pt".format(step)
    checkpoint_path = os.path.join(args.checkpoint_dir, saved_model_name)

    if discriminator and d_optimizer:
        torch.save(
            {
                "generator": generator.state_dict(),
                "discriminator": discriminator.state_dict(),
                "g_optimizer": g_optimizer.state_dict(),
                "d_optimizer": d_optimizer.state_dict(),
                "global_step": step,
            },
            checkpoint_path,
        )
    else:
        torch.save(
            {
                "generator": generator.state_dict(),
                "g_optimizer": g_optimizer.state_dict(),
                "global_step": step,
            },
            checkpoint_path,
        )

    print("Saved checkpoint: {}".format(checkpoint_path))

    if os.path.exists(os.path.join(args.checkpoint_dir, "checkpoint")):
        with open(os.path.join(args.checkpoint_dir, "checkpoint"), "r") as f:
            ckpts = [x.strip() for x in f.readlines()]
    else:
        ckpts = []
    ckpts.append(saved_model_name)
    for item in ckpts[:-max_to_keep]:
        if os.path.exists(os.path.join(args.checkpoint_dir, item)):
            os.remove(os.path.join(args.checkpoint_dir, item))
    with open(os.path.join(args.checkpoint_dir, "checkpoint"), "w") as f:
        for item in ckpts[-max_to_keep:]:
            f.write("{}\n".format(item))


def attempt_to_restore(
    generator, g_optimizer, checkpoint_dir, discriminator=None, d_optimizer=None
):
    checkpoint_list = os.path.join(checkpoint_dir, "checkpoint")
    if os.path.exists(checkpoint_list):
        checkpoint_filename = open(checkpoint_list).readlines()[-1].strip()
        checkpoint_path = os.path.join(checkpoint_dir, "{}".format(checkpoint_filename))
        print("Restore from {}".format(checkpoint_path))
        checkpoint = torch.load(checkpoint_path, map_location="cpu")
        if generator:
            if not list(generator.state_dict().keys())[0].startswith("module."):
                raw_dict = checkpoint["generator"]
                clean_dict = OrderedDict()
                for k, v in raw_dict.items():
                    if k.startswith("module."):
                        clean_dict[k[7:]] = v
                    else:
                        clean_dict[k] = v
                generator.load_state_dict(clean_dict)
            else:
                generator.load_state_dict(checkpoint["generator"])
        if g_optimizer:
            g_optimizer.load_state_dict(checkpoint["g_optimizer"])
        global_step = 100000
        if discriminator and "discriminator" in checkpoint.keys():
            discriminator.load_state_dict(checkpoint["discriminator"])
            global_step = checkpoint["global_step"]
            print("restore discriminator")
        if d_optimizer and "d_optimizer" in checkpoint.keys():
            d_optimizer.load_state_dict(checkpoint["d_optimizer"])
            print("restore d_optimizer...")
    else:
        global_step = 0
    return global_step


class ExponentialMovingAverage(object):
    def __init__(self, decay):
        self.decay = decay
        self.shadow = {}

    def register(self, name, val):
        self.shadow[name] = val.clone()

    def update(self, name, x):
        assert name in self.shadow
        update_delta = self.shadow[name] - x
        self.shadow[name] -= (1.0 - self.decay) * update_delta


def apply_moving_average(model, ema):
    for name, param in model.named_parameters():
        if name in ema.shadow:
            ema.update(name, param.data)


def register_model_to_ema(model, ema):
    for name, param in model.named_parameters():
        if param.requires_grad:
            ema.register(name, param.data)


class YParams(HParams):
    def __init__(self, yaml_file):
        if not os.path.exists(yaml_file):
            raise IOError("yaml file: {} is not existed".format(yaml_file))
        super().__init__()
        self.d = collections.OrderedDict()
        with open(yaml_file) as fp:
            for _, v in yaml().load(fp).items():
                for k1, v1 in v.items():
                    try:
                        if self.get(k1):
                            self.set_hparam(k1, v1)
                        else:
                            self.add_hparam(k1, v1)
                        self.d[k1] = v1
                    except Exception:
                        import traceback

                        print(traceback.format_exc())

    # @property
    def get_elements(self):
        return self.d.items()


def override_config(base_config, new_config):
    """Update new configurations in the original dict with the new dict

    Args:
        base_config (dict): original dict to be overridden
        new_config (dict): dict with new configurations

    Returns:
        dict: updated configuration dict
    """
    for k, v in new_config.items():
        if type(v) == dict:
            if k not in base_config.keys():
                base_config[k] = {}
            base_config[k] = override_config(base_config[k], v)
        else:
            base_config[k] = v
    return base_config


def get_lowercase_keys_config(cfg):
    """Change all keys in cfg to lower case

    Args:
        cfg (dict): dictionary that stores configurations

    Returns:
        dict: dictionary that stores configurations
    """
    updated_cfg = dict()
    for k, v in cfg.items():
        if type(v) == dict:
            v = get_lowercase_keys_config(v)
        updated_cfg[k.lower()] = v
    return updated_cfg


def _load_config(config_fn, lowercase=False):
    """Load configurations into a dictionary

    Args:
        config_fn (str): path to configuration file
        lowercase (bool, optional): whether changing keys to lower case. Defaults to False.

    Returns:
        dict: dictionary that stores configurations
    """
    with open(config_fn, "r") as f:
        data = f.read()
    config_ = json5.loads(data)
    if "base_config" in config_:
        # load configurations from new path
        p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"])
        p_config_ = _load_config(p_config_path)
        config_ = override_config(p_config_, config_)
    if lowercase:
        # change keys in config_ to lower case
        config_ = get_lowercase_keys_config(config_)
    return config_


def load_config(config_fn, lowercase=False):
    """Load configurations into a dictionary

    Args:
        config_fn (str): path to configuration file
        lowercase (bool, optional): _description_. Defaults to False.

    Returns:
        JsonHParams: an object that stores configurations
    """
    config_ = _load_config(config_fn, lowercase=lowercase)
    # create an JsonHParams object with configuration dict
    cfg = JsonHParams(**config_)
    return cfg


def save_config(save_path, cfg):
    """Save configurations into a json file

    Args:
        save_path (str): path to save configurations
        cfg (dict): dictionary that stores configurations
    """
    with open(save_path, "w") as f:
        json5.dump(
            cfg, f, ensure_ascii=False, indent=4, quote_keys=True, sort_keys=True
        )


class JsonHParams:
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            if type(v) == dict:
                v = JsonHParams(**v)
            self[k] = v

    def keys(self):
        return self.__dict__.keys()

    def items(self):
        return self.__dict__.items()

    def values(self):
        return self.__dict__.values()

    def __len__(self):
        return len(self.__dict__)

    def __getitem__(self, key):
        return getattr(self, key)

    def __setitem__(self, key, value):
        return setattr(self, key, value)

    def __contains__(self, key):
        return key in self.__dict__

    def __repr__(self):
        return self.__dict__.__repr__()


class ValueWindow:
    def __init__(self, window_size=100):
        self._window_size = window_size
        self._values = []

    def append(self, x):
        self._values = self._values[-(self._window_size - 1) :] + [x]

    @property
    def sum(self):
        return sum(self._values)

    @property
    def count(self):
        return len(self._values)

    @property
    def average(self):
        return self.sum / max(1, self.count)

    def reset(self):
        self._values = []


class Logger(object):
    def __init__(
        self,
        filename,
        level="info",
        when="D",
        backCount=10,
        fmt="%(asctime)s : %(message)s",
    ):
        self.level_relations = {
            "debug": logging.DEBUG,
            "info": logging.INFO,
            "warning": logging.WARNING,
            "error": logging.ERROR,
            "crit": logging.CRITICAL,
        }
        if level == "debug":
            fmt = "%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s"
        self.logger = logging.getLogger(filename)
        format_str = logging.Formatter(fmt)
        self.logger.setLevel(self.level_relations.get(level))
        sh = logging.StreamHandler()
        sh.setFormatter(format_str)
        th = handlers.TimedRotatingFileHandler(
            filename=filename, when=when, backupCount=backCount, encoding="utf-8"
        )
        th.setFormatter(format_str)
        self.logger.addHandler(sh)
        self.logger.addHandler(th)
        self.logger.info(
            "==========================New Starting Here=============================="
        )


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def slice_segments(x, ids_str, segment_size=4):
    ret = torch.zeros_like(x[:, :, :segment_size])
    for i in range(x.size(0)):
        idx_str = ids_str[i]
        idx_end = idx_str + segment_size
        ret[i] = x[i, :, idx_str:idx_end]
    return ret


def rand_slice_segments(x, x_lengths=None, segment_size=4):
    b, d, t = x.size()
    if x_lengths is None:
        x_lengths = t
    ids_str_max = x_lengths - segment_size + 1
    ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
    ret = slice_segments(x, ids_str, segment_size)
    return ret, ids_str


def subsequent_mask(length):
    mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
    return mask


@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
    n_channels_int = n_channels[0]
    in_act = input_a + input_b
    t_act = torch.tanh(in_act[:, :n_channels_int, :])
    s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
    acts = t_act * s_act
    return acts


def convert_pad_shape(pad_shape):
    l = pad_shape[::-1]
    pad_shape = [item for sublist in l for item in sublist]
    return pad_shape


def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = torch.arange(max_length, dtype=length.dtype, device=length.device)
    return x.unsqueeze(0) < length.unsqueeze(1)


def generate_path(duration, mask):
    """
    duration: [b, 1, t_x]
    mask: [b, 1, t_y, t_x]
    """
    device = duration.device

    b, _, t_y, t_x = mask.shape
    cum_duration = torch.cumsum(duration, -1)

    cum_duration_flat = cum_duration.view(b * t_x)
    path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
    path = path.view(b, t_x, t_y)
    path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
    path = path.unsqueeze(1).transpose(2, 3) * mask
    return path


def clip_grad_value_(parameters, clip_value, norm_type=2):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    norm_type = float(norm_type)
    if clip_value is not None:
        clip_value = float(clip_value)

    total_norm = 0
    for p in parameters:
        param_norm = p.grad.data.norm(norm_type)
        total_norm += param_norm.item() ** norm_type
        if clip_value is not None:
            p.grad.data.clamp_(min=-clip_value, max=clip_value)
    total_norm = total_norm ** (1.0 / norm_type)
    return total_norm


def get_current_time():
    pass


def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
    """
    Args:
      lengths:
        A 1-D tensor containing sentence lengths.
      max_len:
        The length of masks.
    Returns:
      Return a 2-D bool tensor, where masked positions
      are filled with `True` and non-masked positions are
      filled with `False`.

    >>> lengths = torch.tensor([1, 3, 2, 5])
    >>> make_pad_mask(lengths)
    tensor([[False,  True,  True,  True,  True],
            [False, False, False,  True,  True],
            [False, False,  True,  True,  True],
            [False, False, False, False, False]])
    """
    assert lengths.ndim == 1, lengths.ndim
    max_len = max(max_len, lengths.max())
    n = lengths.size(0)
    seq_range = torch.arange(0, max_len, device=lengths.device)
    expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)

    return expaned_lengths >= lengths.unsqueeze(-1)