File size: 7,397 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

import logging
from contextlib import nullcontext

# if your python version < 3.7 use the below one
# from contextlib import suppress as nullcontext
import torch
from torch.nn.utils import clip_grad_norm_


class Executor:
    def __init__(self):
        self.step = 0

    def train(
        self, model, optimizer, scheduler, data_loader, device, writer, args, scaler
    ):
        """Train one epoch"""
        model.train()
        clip = args.get("grad_clip", 50.0)
        log_interval = args.get("log_interval", 10)
        rank = args.get("rank", 0)
        epoch = args.get("epoch", 0)
        accum_grad = args.get("accum_grad", 1)
        is_distributed = args.get("is_distributed", True)
        use_amp = args.get("use_amp", False)
        logging.info(
            "using accumulate grad, new batch size is {} times"
            " larger than before".format(accum_grad)
        )
        if use_amp:
            assert scaler is not None
        # A context manager to be used in conjunction with an instance of
        # torch.nn.parallel.DistributedDataParallel to be able to train
        # with uneven inputs across participating processes.
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            model_context = model.join
        else:
            model_context = nullcontext
        num_seen_utts = 0
        with model_context():
            for batch_idx, batch in enumerate(data_loader):
                key, feats, target, feats_lengths, target_lengths = batch
                feats = feats.to(device)
                target = target.to(device)
                feats_lengths = feats_lengths.to(device)
                target_lengths = target_lengths.to(device)
                num_utts = target_lengths.size(0)
                if num_utts == 0:
                    continue
                context = None
                # Disable gradient synchronizations across DDP processes.
                # Within this context, gradients will be accumulated on module
                # variables, which will later be synchronized.
                if is_distributed and batch_idx % accum_grad != 0:
                    context = model.no_sync
                # Used for single gpu training and DDP gradient synchronization
                # processes.
                else:
                    context = nullcontext
                with context():
                    # autocast context
                    # The more details about amp can be found in
                    # https://pytorch.org/docs/stable/notes/amp_examples.html
                    with torch.cuda.amp.autocast(scaler is not None):
                        loss_dict = model(feats, feats_lengths, target, target_lengths)
                        loss = loss_dict["loss"] / accum_grad
                    if use_amp:
                        scaler.scale(loss).backward()
                    else:
                        loss.backward()

                num_seen_utts += num_utts
                if batch_idx % accum_grad == 0:
                    if rank == 0 and writer is not None:
                        writer.add_scalar("train_loss", loss, self.step)
                    # Use mixed precision training
                    if use_amp:
                        scaler.unscale_(optimizer)
                        grad_norm = clip_grad_norm_(model.parameters(), clip)
                        # Must invoke scaler.update() if unscale_() is used in
                        # the iteration to avoid the following error:
                        #   RuntimeError: unscale_() has already been called
                        #   on this optimizer since the last update().
                        # We don't check grad here since that if the gradient
                        # has inf/nan values, scaler.step will skip
                        # optimizer.step().
                        scaler.step(optimizer)
                        scaler.update()
                    else:
                        grad_norm = clip_grad_norm_(model.parameters(), clip)
                        if torch.isfinite(grad_norm):
                            optimizer.step()
                    optimizer.zero_grad()
                    scheduler.step()
                    self.step += 1
                if batch_idx % log_interval == 0:
                    lr = optimizer.param_groups[0]["lr"]
                    log_str = "TRAIN Batch {}/{} loss {:.6f} ".format(
                        epoch, batch_idx, loss.item() * accum_grad
                    )
                    for name, value in loss_dict.items():
                        if name != "loss" and value is not None:
                            log_str += "{} {:.6f} ".format(name, value.item())
                    log_str += "lr {:.8f} rank {}".format(lr, rank)
                    logging.debug(log_str)

    def cv(self, model, data_loader, device, args):
        """Cross validation on"""
        model.eval()
        rank = args.get("rank", 0)
        epoch = args.get("epoch", 0)
        log_interval = args.get("log_interval", 10)
        # in order to avoid division by 0
        num_seen_utts = 1
        total_loss = 0.0
        with torch.no_grad():
            for batch_idx, batch in enumerate(data_loader):
                key, feats, target, feats_lengths, target_lengths = batch
                feats = feats.to(device)
                target = target.to(device)
                feats_lengths = feats_lengths.to(device)
                target_lengths = target_lengths.to(device)
                num_utts = target_lengths.size(0)
                if num_utts == 0:
                    continue
                loss_dict = model(feats, feats_lengths, target, target_lengths)
                loss = loss_dict["loss"]
                if torch.isfinite(loss):
                    num_seen_utts += num_utts
                    total_loss += loss.item() * num_utts
                if batch_idx % log_interval == 0:
                    log_str = "CV Batch {}/{} loss {:.6f} ".format(
                        epoch, batch_idx, loss.item()
                    )
                    for name, value in loss_dict.items():
                        if name != "loss" and value is not None:
                            log_str += "{} {:.6f} ".format(name, value.item())
                    log_str += "history loss {:.6f}".format(total_loss / num_seen_utts)
                    log_str += " rank {}".format(rank)
                    logging.debug(log_str)
        return total_loss, num_seen_utts