File size: 5,410 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import json
from tqdm import tqdm


def cal_metadata(cfg):
    """
    Dump metadata (singers.json, meta_info.json, utt2singer) for singer dataset or multi-datasets.
    """
    from collections import Counter

    datasets = cfg.dataset

    print("-" * 10)
    print("Preparing metadata...")
    print("Including: \n{}\n".format("\n".join(datasets)))

    datasets.sort()

    for dataset in tqdm(datasets):
        save_dir = os.path.join(cfg.preprocess.processed_dir, dataset)
        assert os.path.exists(save_dir)

        # 'train.json' and 'test.json' of target dataset
        train_metadata = os.path.join(save_dir, "train.json")
        test_metadata = os.path.join(save_dir, "test.json")

        # Sort the metadata as the duration order
        with open(train_metadata, "r", encoding="utf-8") as f:
            train_utterances = json.load(f)
        with open(test_metadata, "r", encoding="utf-8") as f:
            test_utterances = json.load(f)

        train_utterances = sorted(train_utterances, key=lambda x: x["Duration"])
        test_utterances = sorted(test_utterances, key=lambda x: x["Duration"])

        # Write back the sorted metadata
        with open(train_metadata, "w") as f:
            json.dump(train_utterances, f, indent=4, ensure_ascii=False)
        with open(test_metadata, "w") as f:
            json.dump(test_utterances, f, indent=4, ensure_ascii=False)

        # Paths of metadata needed to be generated
        singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id)
        utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk)

        # Get the total duration and singer names for train and test utterances
        train_total_duration = sum(utt["Duration"] for utt in train_utterances)
        test_total_duration = sum(utt["Duration"] for utt in test_utterances)

        singer_names = set(
            f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
            for utt in train_utterances + test_utterances
        )

        # Write the utt2singer file and sort the singer names
        with open(utt2singer_file, "w", encoding="utf-8") as f:
            for utt in train_utterances + test_utterances:
                f.write(
                    f"{utt['Dataset']}_{utt['Uid']}\t{replace_augment_name(utt['Dataset'])}_{utt['Singer']}\n"
                )

        singer_names = sorted(singer_names)
        singer_lut = {name: i for i, name in enumerate(singer_names)}

        # dump singers.json
        with open(singer_dict_file, "w", encoding="utf-8") as f:
            json.dump(singer_lut, f, indent=4, ensure_ascii=False)

        meta_info = {
            "dataset": dataset,
            "statistics": {
                "size": len(train_utterances) + len(test_utterances),
                "hours": round(train_total_duration / 3600, 4)
                + round(test_total_duration / 3600, 4),
            },
            "train": {
                "size": len(train_utterances),
                "hours": round(train_total_duration / 3600, 4),
            },
            "test": {
                "size": len(test_utterances),
                "hours": round(test_total_duration / 3600, 4),
            },
            "singers": {"size": len(singer_lut)},
        }
        # Use Counter to count the minutes for each singer
        total_singer2mins = Counter()
        training_singer2mins = Counter()
        for utt in train_utterances:
            k = f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
            training_singer2mins[k] += utt["Duration"] / 60
            total_singer2mins[k] += utt["Duration"] / 60
        for utt in test_utterances:
            k = f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
            total_singer2mins[k] += utt["Duration"] / 60

        training_singer2mins = dict(
            sorted(training_singer2mins.items(), key=lambda x: x[1], reverse=True)
        )
        training_singer2mins = {k: round(v, 2) for k, v in training_singer2mins.items()}
        meta_info["singers"]["training_minutes"] = training_singer2mins

        total_singer2mins = dict(
            sorted(total_singer2mins.items(), key=lambda x: x[1], reverse=True)
        )
        total_singer2mins = {k: round(v, 2) for k, v in total_singer2mins.items()}
        meta_info["singers"]["minutes"] = total_singer2mins

        with open(os.path.join(save_dir, "meta_info.json"), "w") as f:
            json.dump(meta_info, f, indent=4, ensure_ascii=False)

        for singer, min in training_singer2mins.items():
            print(f"Singer {singer}: {min} mins for training")
        print("-" * 10, "\n")


def replace_augment_name(dataset: str) -> str:
    """Replace the augmented dataset name with the original dataset name.
    >>> print(replace_augment_name("dataset_equalizer"))
    dataset
    """
    if "equalizer" in dataset:
        dataset = dataset.replace("_equalizer", "")
    elif "formant_shift" in dataset:
        dataset = dataset.replace("_formant_shift", "")
    elif "pitch_shift" in dataset:
        dataset = dataset.replace("_pitch_shift", "")
    elif "time_stretch" in dataset:
        dataset = dataset.replace("_time_stretch", "")
    else:
        pass
    return dataset