File size: 29,542 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import json
import os
import random
import shutil
import time
from abc import abstractmethod
from pathlib import Path

import accelerate
import json5
import numpy as np
import torch
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from torch.utils.data import ConcatDataset, DataLoader
from tqdm import tqdm

from models.base.base_sampler import build_samplers
from optimizer.optimizers import NoamLR


class BaseTrainer(object):
    r"""The base trainer for all tasks. Any trainer should inherit from this class."""

    def __init__(self, args=None, cfg=None):
        super().__init__()

        self.args = args
        self.cfg = cfg

        cfg.exp_name = args.exp_name

        # init with accelerate
        self._init_accelerator()
        self.accelerator.wait_for_everyone()

        # Use accelerate logger for distributed training
        with self.accelerator.main_process_first():
            self.logger = get_logger(args.exp_name, log_level=args.log_level)

        # Log some info
        self.logger.info("=" * 56)
        self.logger.info("||\t\t" + "New training process started." + "\t\t||")
        self.logger.info("=" * 56)
        self.logger.info("\n")
        self.logger.debug(f"Using {args.log_level.upper()} logging level.")
        self.logger.info(f"Experiment name: {args.exp_name}")
        self.logger.info(f"Experiment directory: {self.exp_dir}")
        self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
        if self.accelerator.is_main_process:
            os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")

        # init counts
        self.batch_count: int = 0
        self.step: int = 0
        self.epoch: int = 0
        self.max_epoch = (
            self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
        )
        self.logger.info(
            "Max epoch: {}".format(
                self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
            )
        )

        # Check values
        if self.accelerator.is_main_process:
            self.__check_basic_configs()
            # Set runtime configs
            self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
            self.checkpoints_path = [
                [] for _ in range(len(self.save_checkpoint_stride))
            ]
            self.keep_last = [
                i if i > 0 else float("inf") for i in self.cfg.train.keep_last
            ]
            self.run_eval = self.cfg.train.run_eval

        # set random seed
        with self.accelerator.main_process_first():
            start = time.monotonic_ns()
            self._set_random_seed(self.cfg.train.random_seed)
            end = time.monotonic_ns()
            self.logger.debug(
                f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
            )
            self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")

        # setup data_loader
        with self.accelerator.main_process_first():
            self.logger.info("Building dataset...")
            start = time.monotonic_ns()
            self.train_dataloader, self.valid_dataloader = self._build_dataloader()
            end = time.monotonic_ns()
            self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")

        # setup model
        with self.accelerator.main_process_first():
            self.logger.info("Building model...")
            start = time.monotonic_ns()
            self.model = self._build_model()
            end = time.monotonic_ns()
            self.logger.debug(self.model)
            self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
            self.logger.info(
                f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M"
            )
        # optimizer & scheduler
        with self.accelerator.main_process_first():
            self.logger.info("Building optimizer and scheduler...")
            start = time.monotonic_ns()
            self.optimizer = self.__build_optimizer()
            self.scheduler = self.__build_scheduler()
            end = time.monotonic_ns()
            self.logger.info(
                f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
            )

        # accelerate prepare
        self.logger.info("Initializing accelerate...")
        start = time.monotonic_ns()
        (
            self.train_dataloader,
            self.valid_dataloader,
            self.model,
            self.optimizer,
            self.scheduler,
        ) = self.accelerator.prepare(
            self.train_dataloader,
            self.valid_dataloader,
            self.model,
            self.optimizer,
            self.scheduler,
        )
        end = time.monotonic_ns()
        self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")

        # create criterion
        with self.accelerator.main_process_first():
            self.logger.info("Building criterion...")
            start = time.monotonic_ns()
            self.criterion = self._build_criterion()
            end = time.monotonic_ns()
            self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")

        # Resume or Finetune
        with self.accelerator.main_process_first():
            if args.resume:
                ## Automatically resume according to the current exprimental name
                self.logger.info("Resuming from {}...".format(self.checkpoint_dir))
                start = time.monotonic_ns()
                ckpt_path = self.__load_model(
                    checkpoint_dir=self.checkpoint_dir, resume_type=args.resume_type
                )
                end = time.monotonic_ns()
                self.logger.info(
                    f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
                )
                self.checkpoints_path = json.load(
                    open(os.path.join(ckpt_path, "ckpts.json"), "r")
                )
            elif args.resume_from_ckpt_path and args.resume_from_ckpt_path != "":
                ## Resume from the given checkpoint path
                if not os.path.exists(args.resume_from_ckpt_path):
                    raise ValueError(
                        "[Error] The resumed checkpoint path {} don't exist.".format(
                            args.resume_from_ckpt_path
                        )
                    )

                self.logger.info(
                    "Resuming from {}...".format(args.resume_from_ckpt_path)
                )
                start = time.monotonic_ns()
                ckpt_path = self.__load_model(
                    checkpoint_path=args.resume_from_ckpt_path,
                    resume_type=args.resume_type,
                )
                end = time.monotonic_ns()
                self.logger.info(
                    f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
                )

        # save config file path
        self.config_save_path = os.path.join(self.exp_dir, "args.json")

    ### Following are abstract methods that should be implemented in child classes ###
    @abstractmethod
    def _build_dataset(self):
        r"""Build dataset for model training/validating/evaluating."""
        pass

    @staticmethod
    @abstractmethod
    def _build_criterion():
        r"""Build criterion function for model loss calculation."""
        pass

    @abstractmethod
    def _build_model(self):
        r"""Build model for training/validating/evaluating."""
        pass

    @abstractmethod
    def _forward_step(self, batch):
        r"""One forward step of the neural network. This abstract method is trying to
        unify ``_train_step`` and ``_valid_step`` and avoid redundant implementation.
        However, for special case that using different forward step pattern for
        training and validating, you could just override this method with ``pass`` and
        implement ``_train_step`` and ``_valid_step`` separately.
        """
        pass

    @abstractmethod
    def _save_auxiliary_states(self):
        r"""To save some auxiliary states when saving model's ckpt"""
        pass

    ### Abstract methods end ###

    ### THIS IS MAIN ENTRY ###
    def train_loop(self):
        r"""Training loop. The public entry of training process."""
        # Wait everyone to prepare before we move on
        self.accelerator.wait_for_everyone()
        # dump config file
        if self.accelerator.is_main_process:
            self.__dump_cfg(self.config_save_path)
        self.model.train()
        self.optimizer.zero_grad()
        # Wait to ensure good to go
        self.accelerator.wait_for_everyone()
        while self.epoch < self.max_epoch:
            self.logger.info("\n")
            self.logger.info("-" * 32)
            self.logger.info("Epoch {}: ".format(self.epoch))

            ### TODO: change the return values of _train_epoch() to a loss dict, or (total_loss, loss_dict)
            ### It's inconvenient for the model with multiple losses
            # Do training & validating epoch
            train_loss = self._train_epoch()
            self.logger.info("  |- Train/Loss: {:.6f}".format(train_loss))
            valid_loss = self._valid_epoch()
            self.logger.info("  |- Valid/Loss: {:.6f}".format(valid_loss))
            self.accelerator.log(
                {"Epoch/Train Loss": train_loss, "Epoch/Valid Loss": valid_loss},
                step=self.epoch,
            )

            self.accelerator.wait_for_everyone()
            # TODO: what is scheduler?
            self.scheduler.step(valid_loss)  # FIXME: use epoch track correct?

            # Check if hit save_checkpoint_stride and run_eval
            run_eval = False
            if self.accelerator.is_main_process:
                save_checkpoint = False
                hit_dix = []
                for i, num in enumerate(self.save_checkpoint_stride):
                    if self.epoch % num == 0:
                        save_checkpoint = True
                        hit_dix.append(i)
                        run_eval |= self.run_eval[i]

            self.accelerator.wait_for_everyone()
            if self.accelerator.is_main_process and save_checkpoint:
                path = os.path.join(
                    self.checkpoint_dir,
                    "epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                        self.epoch, self.step, train_loss
                    ),
                )
                self.tmp_checkpoint_save_path = path
                self.accelerator.save_state(path)
                print(f"save checkpoint in {path}")
                json.dump(
                    self.checkpoints_path,
                    open(os.path.join(path, "ckpts.json"), "w"),
                    ensure_ascii=False,
                    indent=4,
                )
                self._save_auxiliary_states()

                # Remove old checkpoints
                to_remove = []
                for idx in hit_dix:
                    self.checkpoints_path[idx].append(path)
                    while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
                        to_remove.append((idx, self.checkpoints_path[idx].pop(0)))

                # Search conflicts
                total = set()
                for i in self.checkpoints_path:
                    total |= set(i)
                do_remove = set()
                for idx, path in to_remove[::-1]:
                    if path in total:
                        self.checkpoints_path[idx].insert(0, path)
                    else:
                        do_remove.add(path)

                # Remove old checkpoints
                for path in do_remove:
                    shutil.rmtree(path, ignore_errors=True)
                    self.logger.debug(f"Remove old checkpoint: {path}")

            self.accelerator.wait_for_everyone()
            if run_eval:
                # TODO: run evaluation
                pass

            # Update info for each epoch
            self.epoch += 1

        # Finish training and save final checkpoint
        self.accelerator.wait_for_everyone()
        if self.accelerator.is_main_process:
            self.accelerator.save_state(
                os.path.join(
                    self.checkpoint_dir,
                    "final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                        self.epoch, self.step, valid_loss
                    ),
                )
            )
            self._save_auxiliary_states()

        self.accelerator.end_training()

    ### Following are methods that can be used directly in child classes ###
    def _train_epoch(self):
        r"""Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        self.model.train()
        epoch_sum_loss: float = 0.0
        epoch_step: int = 0
        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            # Do training step and BP
            with self.accelerator.accumulate(self.model):
                loss = self._train_step(batch)
                self.accelerator.backward(loss)
                self.optimizer.step()
                self.optimizer.zero_grad()
            self.batch_count += 1

            # Update info for each step
            # TODO: step means BP counts or batch counts?
            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                epoch_sum_loss += loss
                self.accelerator.log(
                    {
                        "Step/Train Loss": loss,
                        "Step/Learning Rate": self.optimizer.param_groups[0]["lr"],
                    },
                    step=self.step,
                )
                self.step += 1
                epoch_step += 1

        self.accelerator.wait_for_everyone()
        return (
            epoch_sum_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )

    @torch.inference_mode()
    def _valid_epoch(self):
        r"""Testing epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        self.model.eval()
        epoch_sum_loss = 0.0
        for batch in tqdm(
            self.valid_dataloader,
            desc=f"Validating Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            batch_loss = self._valid_step(batch)
            epoch_sum_loss += batch_loss.item()

        self.accelerator.wait_for_everyone()
        return epoch_sum_loss / len(self.valid_dataloader)

    def _train_step(self, batch):
        r"""Training forward step. Should return average loss of a sample over
        one batch. Provoke ``_forward_step`` is recommended except for special case.
        See ``_train_epoch`` for usage.
        """
        return self._forward_step(batch)

    @torch.inference_mode()
    def _valid_step(self, batch):
        r"""Testing forward step. Should return average loss of a sample over
        one batch. Provoke ``_forward_step`` is recommended except for special case.
        See ``_test_epoch`` for usage.
        """
        return self._forward_step(batch)

    def __load_model(
        self,
        checkpoint_dir: str = None,
        checkpoint_path: str = None,
        resume_type: str = "",
    ):
        r"""Load model from checkpoint. If checkpoint_path is None, it will
        load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
        None, it will load the checkpoint specified by checkpoint_path. **Only use this
        method after** ``accelerator.prepare()``.
        """
        if checkpoint_path is None:
            ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
            ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
            checkpoint_path = ls[0]
            self.logger.info("Resume from {}...".format(checkpoint_path))

        if resume_type in ["resume", ""]:
            # Load all the things, including model weights, optimizer, scheduler, and random states.
            self.accelerator.load_state(input_dir=checkpoint_path)

            # set epoch and step
            self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
            self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1

        elif resume_type == "finetune":
            # Load only the model weights
            accelerate.load_checkpoint_and_dispatch(
                self.accelerator.unwrap_model(self.model),
                os.path.join(checkpoint_path, "pytorch_model.bin"),
            )
            self.logger.info("Load model weights for finetune...")

        else:
            raise ValueError("Resume_type must be `resume` or `finetune`.")

        return checkpoint_path

    # TODO: LEGACY CODE
    def _build_dataloader(self):
        Dataset, Collator = self._build_dataset()

        # build dataset instance for each dataset and combine them by ConcatDataset
        datasets_list = []
        for dataset in self.cfg.dataset:
            subdataset = Dataset(self.cfg, dataset, is_valid=False)
            datasets_list.append(subdataset)
        train_dataset = ConcatDataset(datasets_list)
        train_collate = Collator(self.cfg)
        _, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train")
        self.logger.debug(f"train batch_sampler: {list(batch_sampler)}")
        self.logger.debug(f"length: {train_dataset.cumulative_sizes}")
        # TODO: use config instead of (sampler, shuffle, drop_last, batch_size)
        train_loader = DataLoader(
            train_dataset,
            collate_fn=train_collate,
            batch_sampler=batch_sampler,
            num_workers=self.cfg.train.dataloader.num_worker,
            pin_memory=self.cfg.train.dataloader.pin_memory,
        )

        # Build valid dataloader
        datasets_list = []
        for dataset in self.cfg.dataset:
            subdataset = Dataset(self.cfg, dataset, is_valid=True)
            datasets_list.append(subdataset)
        valid_dataset = ConcatDataset(datasets_list)
        valid_collate = Collator(self.cfg)
        _, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid")
        self.logger.debug(f"valid batch_sampler: {list(batch_sampler)}")
        self.logger.debug(f"length: {valid_dataset.cumulative_sizes}")
        valid_loader = DataLoader(
            valid_dataset,
            collate_fn=valid_collate,
            batch_sampler=batch_sampler,
            num_workers=self.cfg.train.dataloader.num_worker,
            pin_memory=self.cfg.train.dataloader.pin_memory,
        )
        return train_loader, valid_loader

    @staticmethod
    def _set_random_seed(seed):
        r"""Set random seed for all possible random modules."""
        random.seed(seed)
        np.random.seed(seed)
        torch.random.manual_seed(seed)

    def _check_nan(self, loss, y_pred, y_gt):
        if torch.any(torch.isnan(loss)):
            self.logger.fatal("Fatal Error: Training is down since loss has Nan!")
            self.logger.error("loss = {:.6f}".format(loss.item()), in_order=True)
            if torch.any(torch.isnan(y_pred)):
                self.logger.error(
                    f"y_pred has Nan: {torch.any(torch.isnan(y_pred))}", in_order=True
                )
            else:
                self.logger.debug(
                    f"y_pred has Nan: {torch.any(torch.isnan(y_pred))}", in_order=True
                )
            if torch.any(torch.isnan(y_gt)):
                self.logger.error(
                    f"y_gt has Nan: {torch.any(torch.isnan(y_gt))}", in_order=True
                )
            else:
                self.logger.debug(
                    f"y_gt has nan: {torch.any(torch.isnan(y_gt))}", in_order=True
                )
            if torch.any(torch.isnan(y_pred)):
                self.logger.error(f"y_pred: {y_pred}", in_order=True)
            else:
                self.logger.debug(f"y_pred: {y_pred}", in_order=True)
            if torch.any(torch.isnan(y_gt)):
                self.logger.error(f"y_gt: {y_gt}", in_order=True)
            else:
                self.logger.debug(f"y_gt: {y_gt}", in_order=True)

            # TODO: still OK to save tracking?
            self.accelerator.end_training()
            raise RuntimeError("Loss has Nan! See log for more info.")

    ### Protected methods end ###

    ## Following are private methods ##
    ## !!! These are inconvenient for GAN-based model training. It'd be better to move these to svc_trainer.py if needed.
    def __build_optimizer(self):
        r"""Build optimizer for model."""
        # Make case-insensitive matching
        if self.cfg.train.optimizer.lower() == "adadelta":
            optimizer = torch.optim.Adadelta(
                self.model.parameters(), **self.cfg.train.adadelta
            )
            self.logger.info("Using Adadelta optimizer.")
        elif self.cfg.train.optimizer.lower() == "adagrad":
            optimizer = torch.optim.Adagrad(
                self.model.parameters(), **self.cfg.train.adagrad
            )
            self.logger.info("Using Adagrad optimizer.")
        elif self.cfg.train.optimizer.lower() == "adam":
            optimizer = torch.optim.Adam(self.model.parameters(), **self.cfg.train.adam)
            self.logger.info("Using Adam optimizer.")
        elif self.cfg.train.optimizer.lower() == "adamw":
            optimizer = torch.optim.AdamW(
                self.model.parameters(), **self.cfg.train.adamw
            )
        elif self.cfg.train.optimizer.lower() == "sparseadam":
            optimizer = torch.optim.SparseAdam(
                self.model.parameters(), **self.cfg.train.sparseadam
            )
        elif self.cfg.train.optimizer.lower() == "adamax":
            optimizer = torch.optim.Adamax(
                self.model.parameters(), **self.cfg.train.adamax
            )
        elif self.cfg.train.optimizer.lower() == "asgd":
            optimizer = torch.optim.ASGD(self.model.parameters(), **self.cfg.train.asgd)
        elif self.cfg.train.optimizer.lower() == "lbfgs":
            optimizer = torch.optim.LBFGS(
                self.model.parameters(), **self.cfg.train.lbfgs
            )
        elif self.cfg.train.optimizer.lower() == "nadam":
            optimizer = torch.optim.NAdam(
                self.model.parameters(), **self.cfg.train.nadam
            )
        elif self.cfg.train.optimizer.lower() == "radam":
            optimizer = torch.optim.RAdam(
                self.model.parameters(), **self.cfg.train.radam
            )
        elif self.cfg.train.optimizer.lower() == "rmsprop":
            optimizer = torch.optim.RMSprop(
                self.model.parameters(), **self.cfg.train.rmsprop
            )
        elif self.cfg.train.optimizer.lower() == "rprop":
            optimizer = torch.optim.Rprop(
                self.model.parameters(), **self.cfg.train.rprop
            )
        elif self.cfg.train.optimizer.lower() == "sgd":
            optimizer = torch.optim.SGD(self.model.parameters(), **self.cfg.train.sgd)
        else:
            raise NotImplementedError(
                f"Optimizer {self.cfg.train.optimizer} not supported yet!"
            )
        return optimizer

    def __build_scheduler(self):
        r"""Build scheduler for optimizer."""
        # Make case-insensitive matching
        if self.cfg.train.scheduler.lower() == "lambdalr":
            scheduler = torch.optim.lr_scheduler.LambdaLR(
                self.optimizer, **self.cfg.train.lambdalr
            )
        elif self.cfg.train.scheduler.lower() == "multiplicativelr":
            scheduler = torch.optim.lr_scheduler.MultiplicativeLR(
                self.optimizer, **self.cfg.train.multiplicativelr
            )
        elif self.cfg.train.scheduler.lower() == "steplr":
            scheduler = torch.optim.lr_scheduler.StepLR(
                self.optimizer, **self.cfg.train.steplr
            )
        elif self.cfg.train.scheduler.lower() == "multisteplr":
            scheduler = torch.optim.lr_scheduler.MultiStepLR(
                self.optimizer, **self.cfg.train.multisteplr
            )
        elif self.cfg.train.scheduler.lower() == "constantlr":
            scheduler = torch.optim.lr_scheduler.ConstantLR(
                self.optimizer, **self.cfg.train.constantlr
            )
        elif self.cfg.train.scheduler.lower() == "linearlr":
            scheduler = torch.optim.lr_scheduler.LinearLR(
                self.optimizer, **self.cfg.train.linearlr
            )
        elif self.cfg.train.scheduler.lower() == "exponentiallr":
            scheduler = torch.optim.lr_scheduler.ExponentialLR(
                self.optimizer, **self.cfg.train.exponentiallr
            )
        elif self.cfg.train.scheduler.lower() == "polynomiallr":
            scheduler = torch.optim.lr_scheduler.PolynomialLR(
                self.optimizer, **self.cfg.train.polynomiallr
            )
        elif self.cfg.train.scheduler.lower() == "cosineannealinglr":
            scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
                self.optimizer, **self.cfg.train.cosineannealinglr
            )
        elif self.cfg.train.scheduler.lower() == "sequentiallr":
            scheduler = torch.optim.lr_scheduler.SequentialLR(
                self.optimizer, **self.cfg.train.sequentiallr
            )
        elif self.cfg.train.scheduler.lower() == "reducelronplateau":
            scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
                self.optimizer, **self.cfg.train.reducelronplateau
            )
        elif self.cfg.train.scheduler.lower() == "cycliclr":
            scheduler = torch.optim.lr_scheduler.CyclicLR(
                self.optimizer, **self.cfg.train.cycliclr
            )
        elif self.cfg.train.scheduler.lower() == "onecyclelr":
            scheduler = torch.optim.lr_scheduler.OneCycleLR(
                self.optimizer, **self.cfg.train.onecyclelr
            )
        elif self.cfg.train.scheduler.lower() == "cosineannearingwarmrestarts":
            scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
                self.optimizer, **self.cfg.train.cosineannearingwarmrestarts
            )
        elif self.cfg.train.scheduler.lower() == "noamlr":
            scheduler = NoamLR(self.optimizer, **self.cfg.train.lr_scheduler)
        else:
            raise NotImplementedError(
                f"Scheduler {self.cfg.train.scheduler} not supported yet!"
            )
        return scheduler

    def _init_accelerator(self):
        self.exp_dir = os.path.join(
            os.path.abspath(self.cfg.log_dir), self.args.exp_name
        )
        project_config = ProjectConfiguration(
            project_dir=self.exp_dir,
            logging_dir=os.path.join(self.exp_dir, "log"),
        )
        self.accelerator = accelerate.Accelerator(
            gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
            log_with=self.cfg.train.tracker,
            project_config=project_config,
        )
        if self.accelerator.is_main_process:
            os.makedirs(project_config.project_dir, exist_ok=True)
            os.makedirs(project_config.logging_dir, exist_ok=True)
        with self.accelerator.main_process_first():
            self.accelerator.init_trackers(self.args.exp_name)

    def __check_basic_configs(self):
        if self.cfg.train.gradient_accumulation_step <= 0:
            self.logger.fatal("Invalid gradient_accumulation_step value!")
            self.logger.error(
                f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
            )
            self.accelerator.end_training()
            raise ValueError(
                f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
            )
        # TODO: check other values

    @staticmethod
    def __count_parameters(model):
        model_param = 0.0
        if isinstance(model, dict):
            for key, value in model.items():
                model_param += sum(p.numel() for p in model[key].parameters())
        else:
            model_param = sum(p.numel() for p in model.parameters())
        return model_param

    def __dump_cfg(self, path):
        os.makedirs(os.path.dirname(path), exist_ok=True)
        json5.dump(
            self.cfg,
            open(path, "w"),
            indent=4,
            sort_keys=True,
            ensure_ascii=False,
            quote_keys=True,
        )

    ### Private methods end ###