Spaces:
Running
on
A10G
Running
on
A10G
File size: 13,176 Bytes
df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import random
import os
import json
import numpy as np
import parselmouth
import torch
import torchaudio
from tqdm import tqdm
from audiomentations import TimeStretch
from pedalboard import (
Pedalboard,
HighShelfFilter,
LowShelfFilter,
PeakFilter,
PitchShift,
)
from utils.util import has_existed
PRAAT_CHANGEGENDER_PITCHMEDIAN_DEFAULT = 0.0
PRAAT_CHANGEGENDER_FORMANTSHIFTRATIO_DEFAULT = 1.0
PRAAT_CHANGEGENDER_PITCHSHIFTRATIO_DEFAULT = 1.0
PRAAT_CHANGEGENDER_PITCHRANGERATIO_DEFAULT = 1.0
PRAAT_CHANGEGENDER_DURATIONFACTOR_DEFAULT = 1.0
def wav_to_Sound(wav, sr: int) -> parselmouth.Sound:
"""Convert a waveform to a parselmouth.Sound object
Args:
wav (np.ndarray/torch.Tensor): waveform of shape (n_channels, n_samples)
sr (int, optional): sampling rate.
Returns:
parselmouth.Sound: a parselmouth.Sound object
"""
assert wav.shape == (1, len(wav[0])), "wav must be of shape (1, n_samples)"
sound = None
if isinstance(wav, np.ndarray):
sound = parselmouth.Sound(wav[0], sampling_frequency=sr)
elif isinstance(wav, torch.Tensor):
sound = parselmouth.Sound(wav[0].numpy(), sampling_frequency=sr)
assert sound is not None, "wav must be either np.ndarray or torch.Tensor"
return sound
def get_pitch_median(wav, sr: int):
"""Get the median pitch of a waveform
Args:
wav (np.ndarray/torch.Tensor): waveform of shape (n_channels, n_samples)
sr (int, optional): sampling rate.
Returns:
parselmouth.Pitch, float: a parselmouth.Pitch object and the median pitch
"""
if not isinstance(wav, parselmouth.Sound):
sound = wav_to_Sound(wav, sr)
else:
sound = wav
pitch_median = PRAAT_CHANGEGENDER_PITCHMEDIAN_DEFAULT
# To Pitch: Time step(s)(standard value: 0.0), Pitch floor (Hz)(standard value: 75), Pitch ceiling (Hz)(standard value: 600.0)
pitch = parselmouth.praat.call(sound, "To Pitch", 0.8 / 75, 75, 600)
# Get quantile: From time (s), To time (s), Quantile(0.5 is then the 50% quantile, i.e., the median), Units (Hertz or Bark)
pitch_median = parselmouth.praat.call(pitch, "Get quantile", 0.0, 0.0, 0.5, "Hertz")
return pitch, pitch_median
def change_gender(
sound,
pitch=None,
formant_shift_ratio: float = PRAAT_CHANGEGENDER_FORMANTSHIFTRATIO_DEFAULT,
new_pitch_median: float = PRAAT_CHANGEGENDER_PITCHMEDIAN_DEFAULT,
pitch_range_ratio: float = PRAAT_CHANGEGENDER_PITCHRANGERATIO_DEFAULT,
duration_factor: float = PRAAT_CHANGEGENDER_DURATIONFACTOR_DEFAULT,
) -> parselmouth.Sound:
"""Invoke change gender function in praat
Args:
sound (parselmouth.Sound): a parselmouth.Sound object
pitch (parselmouth.Pitch, optional): a parselmouth.Pitch object. Defaults to None.
formant_shift_ratio (float, optional): formant shift ratio. A value of 1.0 means no change. Greater than 1.0 means higher pitch. Less than 1.0 means lower pitch.
new_pitch_median (float, optional): new pitch median.
pitch_range_ratio (float, optional): pitch range ratio. A value of 1.0 means no change. Greater than 1.0 means higher pitch range. Less than 1.0 means lower pitch range.
duration_factor (float, optional): duration factor. A value of 1.0 means no change. Greater than 1.0 means longer duration. Less than 1.0 means shorter duration.
Returns:
parselmouth.Sound: a parselmouth.Sound object
"""
if pitch is None:
new_sound = parselmouth.praat.call(
sound,
"Change gender",
75,
600,
formant_shift_ratio,
new_pitch_median,
pitch_range_ratio,
duration_factor,
)
else:
new_sound = parselmouth.praat.call(
(sound, pitch),
"Change gender",
formant_shift_ratio,
new_pitch_median,
pitch_range_ratio,
duration_factor,
)
return new_sound
def apply_formant_and_pitch_shift(
sound: parselmouth.Sound,
formant_shift_ratio: float = PRAAT_CHANGEGENDER_FORMANTSHIFTRATIO_DEFAULT,
pitch_shift_ratio: float = PRAAT_CHANGEGENDER_PITCHSHIFTRATIO_DEFAULT,
pitch_range_ratio: float = PRAAT_CHANGEGENDER_PITCHRANGERATIO_DEFAULT,
duration_factor: float = PRAAT_CHANGEGENDER_DURATIONFACTOR_DEFAULT,
) -> parselmouth.Sound:
"""use Praat "Changer gender" command to manipulate pitch and formant
"Change gender": Praat -> Sound Object -> Convert -> Change gender
refer to Help of Praat for more details
# https://github.com/YannickJadoul/Parselmouth/issues/25#issuecomment-608632887 might help
"""
pitch = None
new_pitch_median = PRAAT_CHANGEGENDER_PITCHMEDIAN_DEFAULT
if pitch_shift_ratio != 1.0:
pitch, pitch_median = get_pitch_median(sound, sound.sampling_frequency)
new_pitch_median = pitch_median * pitch_shift_ratio
# refer to https://github.com/praat/praat/issues/1926#issuecomment-974909408
pitch_minimum = parselmouth.praat.call(
pitch, "Get minimum", 0.0, 0.0, "Hertz", "Parabolic"
)
new_median = pitch_median * pitch_shift_ratio
scaled_minimum = pitch_minimum * pitch_shift_ratio
result_minimum = new_median + (scaled_minimum - new_median) * pitch_range_ratio
if result_minimum < 0:
new_pitch_median = PRAAT_CHANGEGENDER_PITCHMEDIAN_DEFAULT
pitch_range_ratio = PRAAT_CHANGEGENDER_PITCHRANGERATIO_DEFAULT
if math.isnan(new_pitch_median):
new_pitch_median = PRAAT_CHANGEGENDER_PITCHMEDIAN_DEFAULT
pitch_range_ratio = PRAAT_CHANGEGENDER_PITCHRANGERATIO_DEFAULT
new_sound = change_gender(
sound,
pitch,
formant_shift_ratio,
new_pitch_median,
pitch_range_ratio,
duration_factor,
)
return new_sound
# Function used in EQ
def pedalboard_equalizer(wav: np.ndarray, sr: int) -> np.ndarray:
"""Use pedalboard to do equalizer"""
board = Pedalboard()
cutoff_low_freq = 60
cutoff_high_freq = 10000
q_min = 2
q_max = 5
random_all_freq = True
num_filters = 10
if random_all_freq:
key_freqs = [random.uniform(1, 12000) for _ in range(num_filters)]
else:
key_freqs = [
power_ratio(float(z) / (num_filters - 1), cutoff_low_freq, cutoff_high_freq)
for z in range(num_filters)
]
q_values = [
power_ratio(random.uniform(0, 1), q_min, q_max) for _ in range(num_filters)
]
gains = [random.uniform(-12, 12) for _ in range(num_filters)]
# low-shelving filter
board.append(
LowShelfFilter(
cutoff_frequency_hz=key_freqs[0], gain_db=gains[0], q=q_values[0]
)
)
# peaking filters
for i in range(1, 9):
board.append(
PeakFilter(
cutoff_frequency_hz=key_freqs[i], gain_db=gains[i], q=q_values[i]
)
)
# high-shelving filter
board.append(
HighShelfFilter(
cutoff_frequency_hz=key_freqs[9], gain_db=gains[9], q=q_values[9]
)
)
# Apply the pedalboard to the audio
processed_audio = board(wav, sr)
return processed_audio
def power_ratio(r: float, a: float, b: float):
return a * math.pow((b / a), r)
def audiomentations_time_stretch(wav: np.ndarray, sr: int) -> np.ndarray:
"""Use audiomentations to do time stretch"""
transform = TimeStretch(
min_rate=0.8, max_rate=1.25, leave_length_unchanged=False, p=1.0
)
augmented_wav = transform(wav, sample_rate=sr)
return augmented_wav
def formant_and_pitch_shift(
sound: parselmouth.Sound, fs: bool, ps: bool
) -> parselmouth.Sound:
""" """
formant_shift_ratio = PRAAT_CHANGEGENDER_FORMANTSHIFTRATIO_DEFAULT
pitch_shift_ratio = PRAAT_CHANGEGENDER_PITCHSHIFTRATIO_DEFAULT
pitch_range_ratio = PRAAT_CHANGEGENDER_PITCHRANGERATIO_DEFAULT
assert fs != ps, "fs, ps are mutually exclusive"
if fs:
formant_shift_ratio = random.uniform(1.0, 1.4)
use_reciprocal = random.uniform(-1, 1) > 0
if use_reciprocal:
formant_shift_ratio = 1.0 / formant_shift_ratio
# only use praat to change formant
new_sound = apply_formant_and_pitch_shift(
sound,
formant_shift_ratio=formant_shift_ratio,
)
return new_sound
if ps:
board = Pedalboard()
board.append(PitchShift(random.uniform(-12, 12)))
wav_numpy = sound.values
wav_numpy = board(wav_numpy, sound.sampling_frequency)
# use pedalboard to change pitch
new_sound = parselmouth.Sound(
wav_numpy, sampling_frequency=sound.sampling_frequency
)
return new_sound
def wav_manipulation(
wav: torch.Tensor,
sr: int,
aug_type: str = "None",
formant_shift: bool = False,
pitch_shift: bool = False,
time_stretch: bool = False,
equalizer: bool = False,
) -> torch.Tensor:
assert aug_type == "None" or aug_type in [
"formant_shift",
"pitch_shift",
"time_stretch",
"equalizer",
], "aug_type must be one of formant_shift, pitch_shift, time_stretch, equalizer"
assert aug_type == "None" or (
formant_shift == False
and pitch_shift == False
and time_stretch == False
and equalizer == False
), "if aug_type is specified, other argument must be False"
if aug_type != "None":
if aug_type == "formant_shift":
formant_shift = True
if aug_type == "pitch_shift":
pitch_shift = True
if aug_type == "equalizer":
equalizer = True
if aug_type == "time_stretch":
time_stretch = True
wav_numpy = wav.numpy()
if equalizer:
wav_numpy = pedalboard_equalizer(wav_numpy, sr)
if time_stretch:
wav_numpy = audiomentations_time_stretch(wav_numpy, sr)
sound = wav_to_Sound(wav_numpy, sr)
if formant_shift or pitch_shift:
sound = formant_and_pitch_shift(sound, formant_shift, pitch_shift)
wav = torch.from_numpy(sound.values).float()
# shape (1, n_samples)
return wav
def augment_dataset(cfg, dataset) -> list:
"""Augment dataset with formant_shift, pitch_shift, time_stretch, equalizer
Args:
cfg (dict): configuration
dataset (str): dataset name
Returns:
list: augmented dataset names
"""
# load metadata
dataset_path = os.path.join(cfg.preprocess.processed_dir, dataset)
split = ["train", "test"] if "eval" not in dataset else ["test"]
augment_datasets = []
aug_types = [
"formant_shift" if cfg.preprocess.use_formant_shift else None,
"pitch_shift" if cfg.preprocess.use_pitch_shift else None,
"time_stretch" if cfg.preprocess.use_time_stretch else None,
"equalizer" if cfg.preprocess.use_equalizer else None,
]
aug_types = filter(None, aug_types)
for aug_type in aug_types:
print("Augmenting {} with {}...".format(dataset, aug_type))
new_dataset = dataset + "_" + aug_type
augment_datasets.append(new_dataset)
new_dataset_path = os.path.join(cfg.preprocess.processed_dir, new_dataset)
for dataset_type in split:
metadata_path = os.path.join(dataset_path, "{}.json".format(dataset_type))
augmented_metadata = []
new_metadata_path = os.path.join(
new_dataset_path, "{}.json".format(dataset_type)
)
os.makedirs(new_dataset_path, exist_ok=True)
new_dataset_wav_dir = os.path.join(new_dataset_path, "wav")
os.makedirs(new_dataset_wav_dir, exist_ok=True)
if has_existed(new_metadata_path):
continue
with open(metadata_path, "r") as f:
metadata = json.load(f)
for utt in tqdm(metadata):
original_wav_path = utt["Path"]
original_wav, sr = torchaudio.load(original_wav_path)
new_wav = wav_manipulation(original_wav, sr, aug_type=aug_type)
new_wav_path = os.path.join(new_dataset_wav_dir, utt["Uid"] + ".wav")
torchaudio.save(new_wav_path, new_wav, sr)
new_utt = {
"Dataset": utt["Dataset"] + "_" + aug_type,
"index": utt["index"],
"Singer": utt["Singer"],
"Uid": utt["Uid"],
"Path": new_wav_path,
"Duration": utt["Duration"],
}
augmented_metadata.append(new_utt)
new_metadata_path = os.path.join(
new_dataset_path, "{}.json".format(dataset_type)
)
with open(new_metadata_path, "w") as f:
json.dump(augmented_metadata, f, indent=4, ensure_ascii=False)
return augment_datasets
|