Spaces:
Running
on
A10G
Running
on
A10G
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
import random | |
import torch | |
import torch.distributed as dist | |
from torch.utils.data import IterableDataset | |
import wenet.dataset.processor as processor | |
from wenet.utils.file_utils import read_lists | |
class Processor(IterableDataset): | |
def __init__(self, source, f, *args, **kw): | |
assert callable(f) | |
self.source = source | |
self.f = f | |
self.args = args | |
self.kw = kw | |
def set_epoch(self, epoch): | |
self.source.set_epoch(epoch) | |
def __iter__(self): | |
"""Return an iterator over the source dataset processed by the | |
given processor. | |
""" | |
assert self.source is not None | |
assert callable(self.f) | |
return self.f(iter(self.source), *self.args, **self.kw) | |
def apply(self, f): | |
assert callable(f) | |
return Processor(self, f, *self.args, **self.kw) | |
class DistributedSampler: | |
def __init__(self, shuffle=True, partition=True): | |
self.epoch = -1 | |
self.update() | |
self.shuffle = shuffle | |
self.partition = partition | |
def update(self): | |
assert dist.is_available() | |
if dist.is_initialized(): | |
self.rank = dist.get_rank() | |
self.world_size = dist.get_world_size() | |
else: | |
self.rank = 0 | |
self.world_size = 1 | |
worker_info = torch.utils.data.get_worker_info() | |
if worker_info is None: | |
self.worker_id = 0 | |
self.num_workers = 1 | |
else: | |
self.worker_id = worker_info.id | |
self.num_workers = worker_info.num_workers | |
return dict( | |
rank=self.rank, | |
world_size=self.world_size, | |
worker_id=self.worker_id, | |
num_workers=self.num_workers, | |
) | |
def set_epoch(self, epoch): | |
self.epoch = epoch | |
def sample(self, data): | |
"""Sample data according to rank/world_size/num_workers | |
Args: | |
data(List): input data list | |
Returns: | |
List: data list after sample | |
""" | |
data = list(range(len(data))) | |
# TODO(Binbin Zhang): fix this | |
# We can not handle uneven data for CV on DDP, so we don't | |
# sample data by rank, that means every GPU gets the same | |
# and all the CV data | |
if self.partition: | |
if self.shuffle: | |
random.Random(self.epoch).shuffle(data) | |
data = data[self.rank :: self.world_size] | |
data = data[self.worker_id :: self.num_workers] | |
return data | |
class DataList(IterableDataset): | |
def __init__(self, lists, shuffle=True, partition=True): | |
self.lists = lists | |
self.sampler = DistributedSampler(shuffle, partition) | |
def set_epoch(self, epoch): | |
self.sampler.set_epoch(epoch) | |
def __iter__(self): | |
sampler_info = self.sampler.update() | |
indexes = self.sampler.sample(self.lists) | |
for index in indexes: | |
# yield dict(src=src) | |
data = dict(src=self.lists[index]) | |
data.update(sampler_info) | |
yield data | |
def Dataset( | |
data_type, | |
data_list_file, | |
symbol_table, | |
conf, | |
bpe_model=None, | |
non_lang_syms=None, | |
partition=True, | |
): | |
"""Construct dataset from arguments | |
We have two shuffle stage in the Dataset. The first is global | |
shuffle at shards tar/raw file level. The second is global shuffle | |
at training samples level. | |
Args: | |
data_type(str): raw/shard | |
bpe_model(str): model for english bpe part | |
partition(bool): whether to do data partition in terms of rank | |
""" | |
assert data_type in ["raw", "shard"] | |
lists = read_lists(data_list_file) | |
shuffle = conf.get("shuffle", True) | |
dataset = DataList(lists, shuffle=shuffle, partition=partition) | |
if data_type == "shard": | |
dataset = Processor(dataset, processor.url_opener) | |
dataset = Processor(dataset, processor.tar_file_and_group) | |
else: | |
dataset = Processor(dataset, processor.parse_raw) | |
dataset = Processor( | |
dataset, | |
processor.tokenize, | |
symbol_table, | |
bpe_model, | |
non_lang_syms, | |
conf.get("split_with_space", False), | |
) | |
filter_conf = conf.get("filter_conf", {}) | |
dataset = Processor(dataset, processor.filter, **filter_conf) | |
resample_conf = conf.get("resample_conf", {}) | |
dataset = Processor(dataset, processor.resample, **resample_conf) | |
speed_perturb = conf.get("speed_perturb", False) | |
if speed_perturb: | |
dataset = Processor(dataset, processor.speed_perturb) | |
feats_type = conf.get("feats_type", "fbank") | |
assert feats_type in ["fbank", "mfcc"] | |
if feats_type == "fbank": | |
fbank_conf = conf.get("fbank_conf", {}) | |
dataset = Processor(dataset, processor.compute_fbank, **fbank_conf) | |
elif feats_type == "mfcc": | |
mfcc_conf = conf.get("mfcc_conf", {}) | |
dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf) | |
spec_aug = conf.get("spec_aug", True) | |
spec_sub = conf.get("spec_sub", False) | |
spec_trim = conf.get("spec_trim", False) | |
if spec_aug: | |
spec_aug_conf = conf.get("spec_aug_conf", {}) | |
dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf) | |
if spec_sub: | |
spec_sub_conf = conf.get("spec_sub_conf", {}) | |
dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf) | |
if spec_trim: | |
spec_trim_conf = conf.get("spec_trim_conf", {}) | |
dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf) | |
if shuffle: | |
shuffle_conf = conf.get("shuffle_conf", {}) | |
dataset = Processor(dataset, processor.shuffle, **shuffle_conf) | |
sort = conf.get("sort", True) | |
if sort: | |
sort_conf = conf.get("sort_conf", {}) | |
dataset = Processor(dataset, processor.sort, **sort_conf) | |
batch_conf = conf.get("batch_conf", {}) | |
dataset = Processor(dataset, processor.batch, **batch_conf) | |
dataset = Processor(dataset, processor.padding) | |
return dataset | |