Spaces:
Running
on
A10G
Running
on
A10G
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
"""DepthwiseConv2dSubsampling4 and TimeReductionLayer definition.""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from modules.wenet_extractor.transformer.subsampling import BaseSubsampling | |
from typing import Tuple | |
from modules.wenet_extractor.squeezeformer.conv2d import Conv2dValid | |
class DepthwiseConv2dSubsampling4(BaseSubsampling): | |
"""Depthwise Convolutional 2D subsampling (to 1/4 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
pos_enc_class (nn.Module): position encoding class. | |
dw_stride (int): Whether do depthwise convolution. | |
input_size (int): filter bank dimension. | |
""" | |
def __init__( | |
self, | |
idim: int, | |
odim: int, | |
pos_enc_class: torch.nn.Module, | |
dw_stride: bool = False, | |
input_size: int = 80, | |
input_dropout_rate: float = 0.1, | |
init_weights: bool = True, | |
): | |
super(DepthwiseConv2dSubsampling4, self).__init__() | |
self.idim = idim | |
self.odim = odim | |
self.pw_conv = nn.Conv2d( | |
in_channels=idim, out_channels=odim, kernel_size=3, stride=2 | |
) | |
self.act1 = nn.ReLU() | |
self.dw_conv = nn.Conv2d( | |
in_channels=odim, | |
out_channels=odim, | |
kernel_size=3, | |
stride=2, | |
groups=odim if dw_stride else 1, | |
) | |
self.act2 = nn.ReLU() | |
self.pos_enc = pos_enc_class | |
self.input_proj = nn.Sequential( | |
nn.Linear(odim * (((input_size - 1) // 2 - 1) // 2), odim), | |
nn.Dropout(p=input_dropout_rate), | |
) | |
if init_weights: | |
linear_max = (odim * input_size / 4) ** -0.5 | |
torch.nn.init.uniform_( | |
self.input_proj.state_dict()["0.weight"], -linear_max, linear_max | |
) | |
torch.nn.init.uniform_( | |
self.input_proj.state_dict()["0.bias"], -linear_max, linear_max | |
) | |
self.subsampling_rate = 4 | |
# 6 = (3 - 1) * 1 + (3 - 1) * 2 | |
self.right_context = 6 | |
def forward( | |
self, x: torch.Tensor, x_mask: torch.Tensor, offset: int = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
x = x.unsqueeze(1) # (b, c=1, t, f) | |
x = self.pw_conv(x) | |
x = self.act1(x) | |
x = self.dw_conv(x) | |
x = self.act2(x) | |
b, c, t, f = x.size() | |
x = x.permute(0, 2, 1, 3) | |
x = x.contiguous().view(b, t, c * f) | |
x, pos_emb = self.pos_enc(x, offset) | |
x = self.input_proj(x) | |
return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2] | |
class TimeReductionLayer1D(nn.Module): | |
""" | |
Modified NeMo, | |
Squeezeformer Time Reduction procedure. | |
Downsamples the audio by `stride` in the time dimension. | |
Args: | |
channel (int): input dimension of | |
MultiheadAttentionMechanism and PositionwiseFeedForward | |
out_dim (int): Output dimension of the module. | |
kernel_size (int): Conv kernel size for | |
depthwise convolution in convolution module | |
stride (int): Downsampling factor in time dimension. | |
""" | |
def __init__( | |
self, channel: int, out_dim: int, kernel_size: int = 5, stride: int = 2 | |
): | |
super(TimeReductionLayer1D, self).__init__() | |
self.channel = channel | |
self.out_dim = out_dim | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = max(0, self.kernel_size - self.stride) | |
self.dw_conv = nn.Conv1d( | |
in_channels=channel, | |
out_channels=channel, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=self.padding, | |
groups=channel, | |
) | |
self.pw_conv = nn.Conv1d( | |
in_channels=channel, | |
out_channels=out_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=1, | |
) | |
self.init_weights() | |
def init_weights(self): | |
dw_max = self.kernel_size**-0.5 | |
pw_max = self.channel**-0.5 | |
torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max) | |
torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max) | |
torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max) | |
torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max) | |
def forward( | |
self, | |
xs, | |
xs_lens: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
): | |
xs = xs.transpose(1, 2) # [B, C, T] | |
xs = xs.masked_fill(mask_pad.eq(0), 0.0) | |
xs = self.dw_conv(xs) | |
xs = self.pw_conv(xs) | |
xs = xs.transpose(1, 2) # [B, T, C] | |
B, T, D = xs.size() | |
mask = mask[:, :: self.stride, :: self.stride] | |
mask_pad = mask_pad[:, :, :: self.stride] | |
L = mask_pad.size(-1) | |
# For JIT exporting, we remove F.pad operator. | |
if L - T < 0: | |
xs = xs[:, : L - T, :].contiguous() | |
else: | |
dummy_pad = torch.zeros(B, L - T, D, device=xs.device) | |
xs = torch.cat([xs, dummy_pad], dim=1) | |
xs_lens = torch.div(xs_lens + 1, 2, rounding_mode="trunc") | |
return xs, xs_lens, mask, mask_pad | |
class TimeReductionLayer2D(nn.Module): | |
def __init__(self, kernel_size: int = 5, stride: int = 2, encoder_dim: int = 256): | |
super(TimeReductionLayer2D, self).__init__() | |
self.encoder_dim = encoder_dim | |
self.kernel_size = kernel_size | |
self.dw_conv = Conv2dValid( | |
in_channels=encoder_dim, | |
out_channels=encoder_dim, | |
kernel_size=(kernel_size, 1), | |
stride=stride, | |
valid_trigy=True, | |
) | |
self.pw_conv = Conv2dValid( | |
in_channels=encoder_dim, | |
out_channels=encoder_dim, | |
kernel_size=1, | |
stride=1, | |
valid_trigx=False, | |
valid_trigy=False, | |
) | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.init_weights() | |
def init_weights(self): | |
dw_max = self.kernel_size**-0.5 | |
pw_max = self.encoder_dim**-0.5 | |
torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max) | |
torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max) | |
torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max) | |
torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max) | |
def forward( | |
self, | |
xs: torch.Tensor, | |
xs_lens: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
xs = xs.masked_fill(mask_pad.transpose(1, 2).eq(0), 0.0) | |
xs = xs.unsqueeze(2) | |
padding1 = self.kernel_size - self.stride | |
xs = F.pad(xs, (0, 0, 0, 0, 0, padding1, 0, 0), mode="constant", value=0.0) | |
xs = self.dw_conv(xs.permute(0, 3, 1, 2)) | |
xs = self.pw_conv(xs).permute(0, 3, 2, 1).squeeze(1).contiguous() | |
tmp_length = xs.size(1) | |
xs_lens = torch.div(xs_lens + 1, 2, rounding_mode="trunc") | |
padding2 = max(0, (xs_lens.max() - tmp_length).data.item()) | |
batch_size, hidden = xs.size(0), xs.size(-1) | |
dummy_pad = torch.zeros(batch_size, padding2, hidden, device=xs.device) | |
xs = torch.cat([xs, dummy_pad], dim=1) | |
mask = mask[:, ::2, ::2] | |
mask_pad = mask_pad[:, :, ::2] | |
return xs, xs_lens, mask, mask_pad | |
class TimeReductionLayerStream(nn.Module): | |
""" | |
Squeezeformer Time Reduction procedure. | |
Downsamples the audio by `stride` in the time dimension. | |
Args: | |
channel (int): input dimension of | |
MultiheadAttentionMechanism and PositionwiseFeedForward | |
out_dim (int): Output dimension of the module. | |
kernel_size (int): Conv kernel size for | |
depthwise convolution in convolution module | |
stride (int): Downsampling factor in time dimension. | |
""" | |
def __init__( | |
self, channel: int, out_dim: int, kernel_size: int = 1, stride: int = 2 | |
): | |
super(TimeReductionLayerStream, self).__init__() | |
self.channel = channel | |
self.out_dim = out_dim | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dw_conv = nn.Conv1d( | |
in_channels=channel, | |
out_channels=channel, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=0, | |
groups=channel, | |
) | |
self.pw_conv = nn.Conv1d( | |
in_channels=channel, | |
out_channels=out_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=1, | |
) | |
self.init_weights() | |
def init_weights(self): | |
dw_max = self.kernel_size**-0.5 | |
pw_max = self.channel**-0.5 | |
torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max) | |
torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max) | |
torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max) | |
torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max) | |
def forward( | |
self, | |
xs, | |
xs_lens: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
): | |
xs = xs.transpose(1, 2) # [B, C, T] | |
xs = xs.masked_fill(mask_pad.eq(0), 0.0) | |
xs = self.dw_conv(xs) | |
xs = self.pw_conv(xs) | |
xs = xs.transpose(1, 2) # [B, T, C] | |
B, T, D = xs.size() | |
mask = mask[:, :: self.stride, :: self.stride] | |
mask_pad = mask_pad[:, :, :: self.stride] | |
L = mask_pad.size(-1) | |
# For JIT exporting, we remove F.pad operator. | |
if L - T < 0: | |
xs = xs[:, : L - T, :].contiguous() | |
else: | |
dummy_pad = torch.zeros(B, L - T, D, device=xs.device) | |
xs = torch.cat([xs, dummy_pad], dim=1) | |
xs_lens = torch.div(xs_lens + 1, 2, rounding_mode="trunc") | |
return xs, xs_lens, mask, mask_pad | |