RMSnow's picture
add backend inference and inferface output
0883aa1
raw
history blame
10.8 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This module is modified from [Whisper](https://github.com/openai/whisper.git).
# ## Citations
# ```bibtex
# @inproceedings{openai-whisper,
# author = {Alec Radford and
# Jong Wook Kim and
# Tao Xu and
# Greg Brockman and
# Christine McLeavey and
# Ilya Sutskever},
# title = {Robust Speech Recognition via Large-Scale Weak Supervision},
# booktitle = {{ICML}},
# series = {Proceedings of Machine Learning Research},
# volume = {202},
# pages = {28492--28518},
# publisher = {{PMLR}},
# year = {2023}
# }
# ```
#
import os
from dataclasses import dataclass
from functools import lru_cache
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import GPT2TokenizerFast
LANGUAGES = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"he": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}
# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
**{language: code for code, language in LANGUAGES.items()},
"burmese": "my",
"valencian": "ca",
"flemish": "nl",
"haitian": "ht",
"letzeburgesch": "lb",
"pushto": "ps",
"panjabi": "pa",
"moldavian": "ro",
"moldovan": "ro",
"sinhalese": "si",
"castilian": "es",
}
@dataclass(frozen=True)
class Tokenizer:
"""A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
tokenizer: "GPT2TokenizerFast"
language: Optional[str]
sot_sequence: Tuple[int]
def encode(self, text, **kwargs):
return self.tokenizer.encode(text, **kwargs)
def decode(
self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs
):
return self.tokenizer.decode(token_ids, **kwargs)
def decode_with_timestamps(self, tokens) -> str:
"""
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
"""
outputs = [[]]
for token in tokens:
if token >= self.timestamp_begin:
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
outputs.append(timestamp)
outputs.append([])
else:
outputs[-1].append(token)
outputs = [
s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs
]
return "".join(outputs)
@property
@lru_cache()
def eot(self) -> int:
return self.tokenizer.eos_token_id
@property
@lru_cache()
def sot(self) -> int:
return self._get_single_token_id("<|startoftranscript|>")
@property
@lru_cache()
def sot_lm(self) -> int:
return self._get_single_token_id("<|startoflm|>")
@property
@lru_cache()
def sot_prev(self) -> int:
return self._get_single_token_id("<|startofprev|>")
@property
@lru_cache()
def no_speech(self) -> int:
return self._get_single_token_id("<|nospeech|>")
@property
@lru_cache()
def no_timestamps(self) -> int:
return self._get_single_token_id("<|notimestamps|>")
@property
@lru_cache()
def timestamp_begin(self) -> int:
return self.tokenizer.all_special_ids[-1] + 1
@property
@lru_cache()
def language_token(self) -> int:
"""Returns the token id corresponding to the value of the `language` field"""
if self.language is None:
raise ValueError(f"This tokenizer does not have language token configured")
additional_tokens = dict(
zip(
self.tokenizer.additional_special_tokens,
self.tokenizer.additional_special_tokens_ids,
)
)
candidate = f"<|{self.language}|>"
if candidate in additional_tokens:
return additional_tokens[candidate]
raise KeyError(f"Language {self.language} not found in tokenizer.")
@property
@lru_cache()
def all_language_tokens(self) -> Tuple[int]:
result = []
for token, token_id in zip(
self.tokenizer.additional_special_tokens,
self.tokenizer.additional_special_tokens_ids,
):
if token.strip("<|>") in LANGUAGES:
result.append(token_id)
return tuple(result)
@property
@lru_cache()
def all_language_codes(self) -> Tuple[str]:
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
@property
@lru_cache()
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
return tuple(list(self.sot_sequence) + [self.no_timestamps])
@property
@lru_cache()
def non_speech_tokens(self) -> Tuple[int]:
"""
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
- ♪♪♪
- ( SPEAKING FOREIGN LANGUAGE )
- [DAVID] Hey there,
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
"""
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
symbols += (
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
)
# symbols that may be a single token or multiple tokens depending on the tokenizer.
# In case they're multiple tokens, suppress the first token, which is safe because:
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [
self.tokenizer.encode(symbol),
self.tokenizer.encode(" " + symbol),
]:
if len(tokens) == 1 or symbol in miscellaneous:
result.add(tokens[0])
return tuple(sorted(result))
def _get_single_token_id(self, text) -> int:
tokens = self.tokenizer.encode(text)
assert len(tokens) == 1, f"{text} is not encoded as a single token"
return tokens[0]
@lru_cache(maxsize=None)
def build_tokenizer(name: str = "gpt2"):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
path = os.path.join(os.path.dirname(__file__), "assets", name)
tokenizer = GPT2TokenizerFast.from_pretrained(path)
specials = [
"<|startoftranscript|>",
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
]
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
return tokenizer
@lru_cache(maxsize=None)
def get_tokenizer(
multilingual: bool,
*,
task: Optional[str] = None, # Literal["transcribe", "translate", None]
language: Optional[str] = None,
) -> Tokenizer:
if language is not None:
language = language.lower()
if language not in LANGUAGES:
if language in TO_LANGUAGE_CODE:
language = TO_LANGUAGE_CODE[language]
else:
raise ValueError(f"Unsupported language: {language}")
if multilingual:
tokenizer_name = "multilingual"
task = task or "transcribe"
language = language or "en"
else:
tokenizer_name = "gpt2"
task = None
language = None
tokenizer = build_tokenizer(name=tokenizer_name)
all_special_ids: List[int] = tokenizer.all_special_ids
sot: int = all_special_ids[1]
translate: int = all_special_ids[-6]
transcribe: int = all_special_ids[-5]
langs = tuple(LANGUAGES.keys())
sot_sequence = [sot]
if language is not None:
sot_sequence.append(sot + 1 + langs.index(language))
if task is not None:
sot_sequence.append(transcribe if task == "transcribe" else translate)
return Tokenizer(
tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence)
)