RMSnow's picture
add backend inference and inferface output
0883aa1
raw
history blame
20.2 kB
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import logging
import json
import random
import re
import tarfile
from subprocess import PIPE, Popen
from urllib.parse import urlparse
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence
AUDIO_FORMAT_SETS = set(["flac", "mp3", "m4a", "ogg", "opus", "wav", "wma"])
def url_opener(data):
"""Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert "src" in sample
# TODO(Binbin Zhang): support HTTP
url = sample["src"]
try:
pr = urlparse(url)
# local file
if pr.scheme == "" or pr.scheme == "file":
stream = open(url, "rb")
# network file, such as HTTP(HDFS/OSS/S3)/HTTPS/SCP
else:
cmd = f"wget -q -O - {url}"
process = Popen(cmd, shell=True, stdout=PIPE)
sample.update(process=process)
stream = process.stdout
sample.update(stream=stream)
yield sample
except Exception as ex:
logging.warning("Failed to open {}".format(url))
def tar_file_and_group(data):
"""Expand a stream of open tar files into a stream of tar file contents.
And groups the file with same prefix
Args:
data: Iterable[{src, stream}]
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert "stream" in sample
stream = tarfile.open(fileobj=sample["stream"], mode="r|*")
prev_prefix = None
example = {}
valid = True
for tarinfo in stream:
name = tarinfo.name
pos = name.rfind(".")
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1 :]
if prev_prefix is not None and prefix != prev_prefix:
example["key"] = prev_prefix
if valid:
yield example
example = {}
valid = True
with stream.extractfile(tarinfo) as file_obj:
try:
if postfix == "txt":
example["txt"] = file_obj.read().decode("utf8").strip()
elif postfix in AUDIO_FORMAT_SETS:
waveform, sample_rate = torchaudio.load(file_obj)
example["wav"] = waveform
example["sample_rate"] = sample_rate
else:
example[postfix] = file_obj.read()
except Exception as ex:
valid = False
logging.warning("error to parse {}".format(name))
prev_prefix = prefix
if prev_prefix is not None:
example["key"] = prev_prefix
yield example
stream.close()
if "process" in sample:
sample["process"].communicate()
sample["stream"].close()
def parse_raw(data):
"""Parse key/wav/txt from json line
Args:
data: Iterable[str], str is a json line has key/wav/txt
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert "src" in sample
json_line = sample["src"]
obj = json.loads(json_line)
assert "key" in obj
assert "wav" in obj
assert "txt" in obj
key = obj["key"]
wav_file = obj["wav"]
txt = obj["txt"]
try:
if "start" in obj:
assert "end" in obj
sample_rate = torchaudio.backend.sox_io_backend.info(
wav_file
).sample_rate
start_frame = int(obj["start"] * sample_rate)
end_frame = int(obj["end"] * sample_rate)
waveform, _ = torchaudio.backend.sox_io_backend.load(
filepath=wav_file,
num_frames=end_frame - start_frame,
frame_offset=start_frame,
)
else:
waveform, sample_rate = torchaudio.load(wav_file)
example = dict(key=key, txt=txt, wav=waveform, sample_rate=sample_rate)
yield example
except Exception as ex:
logging.warning("Failed to read {}".format(wav_file))
def filter(
data,
max_length=10240,
min_length=10,
token_max_length=200,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=1,
):
"""Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
assert "label" in sample
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample["wav"].size(1) / sample["sample_rate"] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
if len(sample["label"]) < token_min_length:
continue
if len(sample["label"]) > token_max_length:
continue
if num_frames != 0:
if len(sample["label"]) / num_frames < min_output_input_ratio:
continue
if len(sample["label"]) / num_frames > max_output_input_ratio:
continue
yield sample
def resample(data, resample_rate=16000):
"""Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
print("resample...")
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
sample_rate = sample["sample_rate"]
print("sample_rate: ", sample_rate)
print("resample_rate: ", resample_rate)
waveform = sample["wav"]
if sample_rate != resample_rate:
sample["sample_rate"] = resample_rate
sample["wav"] = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=resample_rate
)(waveform)
yield sample
def speed_perturb(data, speeds=None):
"""Apply speed perturb to the data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
speeds(List[float]): optional speed
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
if speeds is None:
speeds = [0.9, 1.0, 1.1]
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
sample_rate = sample["sample_rate"]
waveform = sample["wav"]
speed = random.choice(speeds)
if speed != 1.0:
wav, _ = torchaudio.sox_effects.apply_effects_tensor(
waveform,
sample_rate,
[["speed", str(speed)], ["rate", str(sample_rate)]],
)
sample["wav"] = wav
yield sample
def compute_fbank(data, num_mel_bins=23, frame_length=25, frame_shift=10, dither=0.0):
"""Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
assert "key" in sample
assert "label" in sample
sample_rate = sample["sample_rate"]
waveform = sample["wav"]
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.fbank(
waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sample_frequency=sample_rate,
)
yield dict(key=sample["key"], label=sample["label"], feat=mat)
def compute_mfcc(
data,
num_mel_bins=23,
frame_length=25,
frame_shift=10,
dither=0.0,
num_ceps=40,
high_freq=0.0,
low_freq=20.0,
):
"""Extract mfcc
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
assert "key" in sample
assert "label" in sample
sample_rate = sample["sample_rate"]
waveform = sample["wav"]
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.mfcc(
waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
num_ceps=num_ceps,
high_freq=high_freq,
low_freq=low_freq,
sample_frequency=sample_rate,
)
yield dict(key=sample["key"], label=sample["label"], feat=mat)
def __tokenize_by_bpe_model(sp, txt):
tokens = []
# CJK(China Japan Korea) unicode range is [U+4E00, U+9FFF], ref:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
pattern = re.compile(r"([\u4e00-\u9fff])")
# Example:
# txt = "你好 ITS'S OKAY 的"
# chars = ["你", "好", " ITS'S OKAY ", "的"]
chars = pattern.split(txt.upper())
mix_chars = [w for w in chars if len(w.strip()) > 0]
for ch_or_w in mix_chars:
# ch_or_w is a single CJK charater(i.e., "你"), do nothing.
if pattern.fullmatch(ch_or_w) is not None:
tokens.append(ch_or_w)
# ch_or_w contains non-CJK charaters(i.e., " IT'S OKAY "),
# encode ch_or_w using bpe_model.
else:
for p in sp.encode_as_pieces(ch_or_w):
tokens.append(p)
return tokens
def tokenize(
data, symbol_table, bpe_model=None, non_lang_syms=None, split_with_space=False
):
"""Decode text to chars or BPE
Inplace operation
Args:
data: Iterable[{key, wav, txt, sample_rate}]
Returns:
Iterable[{key, wav, txt, tokens, label, sample_rate}]
"""
if non_lang_syms is not None:
non_lang_syms_pattern = re.compile(r"(\[[^\[\]]+\]|<[^<>]+>|{[^{}]+})")
else:
non_lang_syms = {}
non_lang_syms_pattern = None
if bpe_model is not None:
import sentencepiece as spm
sp = spm.SentencePieceProcessor()
sp.load(bpe_model)
else:
sp = None
for sample in data:
assert "txt" in sample
txt = sample["txt"].strip()
if non_lang_syms_pattern is not None:
parts = non_lang_syms_pattern.split(txt.upper())
parts = [w for w in parts if len(w.strip()) > 0]
else:
parts = [txt]
label = []
tokens = []
for part in parts:
if part in non_lang_syms:
tokens.append(part)
else:
if bpe_model is not None:
tokens.extend(__tokenize_by_bpe_model(sp, part))
else:
if split_with_space:
part = part.split(" ")
for ch in part:
if ch == " ":
ch = "▁"
tokens.append(ch)
for ch in tokens:
if ch in symbol_table:
label.append(symbol_table[ch])
elif "<unk>" in symbol_table:
label.append(symbol_table["<unk>"])
sample["tokens"] = tokens
sample["label"] = label
yield sample
def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10, max_w=80):
"""Do spec augmentation
Inplace operation
Args:
data: Iterable[{key, feat, label}]
num_t_mask: number of time mask to apply
num_f_mask: number of freq mask to apply
max_t: max width of time mask
max_f: max width of freq mask
max_w: max width of time warp
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert "feat" in sample
x = sample["feat"]
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
max_freq = y.size(1)
# time mask
for i in range(num_t_mask):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
y[start:end, :] = 0
# freq mask
for i in range(num_f_mask):
start = random.randint(0, max_freq - 1)
length = random.randint(1, max_f)
end = min(max_freq, start + length)
y[:, start:end] = 0
sample["feat"] = y
yield sample
def spec_sub(data, max_t=20, num_t_sub=3):
"""Do spec substitute
Inplace operation
ref: U2++, section 3.2.3 [https://arxiv.org/abs/2106.05642]
Args:
data: Iterable[{key, feat, label}]
max_t: max width of time substitute
num_t_sub: number of time substitute to apply
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert "feat" in sample
x = sample["feat"]
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
for i in range(num_t_sub):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
# only substitute the earlier time chosen randomly for current time
pos = random.randint(0, start)
y[start:end, :] = x[start - pos : end - pos, :]
sample["feat"] = y
yield sample
def spec_trim(data, max_t=20):
"""Trim tailing frames. Inplace operation.
ref: TrimTail [https://arxiv.org/abs/2211.00522]
Args:
data: Iterable[{key, feat, label}]
max_t: max width of length trimming
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert "feat" in sample
x = sample["feat"]
assert isinstance(x, torch.Tensor)
max_frames = x.size(0)
length = random.randint(1, max_t)
if length < max_frames / 2:
y = x.clone().detach()[: max_frames - length]
sample["feat"] = y
yield sample
def shuffle(data, shuffle_size=10000):
"""Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= shuffle_size:
random.shuffle(buf)
for x in buf:
yield x
buf = []
# The sample left over
random.shuffle(buf)
for x in buf:
yield x
def sort(data, sort_size=500):
"""Sort the data by feature length.
Sort is used after shuffle and before batch, so we can group
utts with similar lengths into a batch, and `sort_size` should
be less than `shuffle_size`
Args:
data: Iterable[{key, feat, label}]
sort_size: buffer size for sort
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= sort_size:
buf.sort(key=lambda x: x["feat"].size(0))
for x in buf:
yield x
buf = []
# The sample left over
buf.sort(key=lambda x: x["feat"].size(0))
for x in buf:
yield x
def static_batch(data, batch_size=16):
"""Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= batch_size:
yield buf
buf = []
if len(buf) > 0:
yield buf
def dynamic_batch(data, max_frames_in_batch=12000):
"""Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
Args:
data: Iterable[{key, feat, label}]
max_frames_in_batch: max_frames in one batch
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
longest_frames = 0
for sample in data:
assert "feat" in sample
assert isinstance(sample["feat"], torch.Tensor)
new_sample_frames = sample["feat"].size(0)
longest_frames = max(longest_frames, new_sample_frames)
frames_after_padding = longest_frames * (len(buf) + 1)
if frames_after_padding > max_frames_in_batch:
yield buf
buf = [sample]
longest_frames = new_sample_frames
else:
buf.append(sample)
if len(buf) > 0:
yield buf
def batch(data, batch_type="static", batch_size=16, max_frames_in_batch=12000):
"""Wrapper for static/dynamic batch"""
if batch_type == "static":
return static_batch(data, batch_size)
elif batch_type == "dynamic":
return dynamic_batch(data, max_frames_in_batch)
else:
logging.fatal("Unsupported batch type {}".format(batch_type))
def padding(data):
"""Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
feats_length = torch.tensor(
[x["feat"].size(0) for x in sample], dtype=torch.int32
)
order = torch.argsort(feats_length, descending=True)
feats_lengths = torch.tensor(
[sample[i]["feat"].size(0) for i in order], dtype=torch.int32
)
sorted_feats = [sample[i]["feat"] for i in order]
sorted_keys = [sample[i]["key"] for i in order]
sorted_labels = [
torch.tensor(sample[i]["label"], dtype=torch.int64) for i in order
]
label_lengths = torch.tensor(
[x.size(0) for x in sorted_labels], dtype=torch.int32
)
padded_feats = pad_sequence(sorted_feats, batch_first=True, padding_value=0)
padding_labels = pad_sequence(sorted_labels, batch_first=True, padding_value=-1)
yield (sorted_keys, padded_feats, padding_labels, feats_lengths, label_lengths)