Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import torchaudio | |
from tqdm import tqdm | |
from glob import glob | |
from utils.util import has_existed | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Dataset splits for ljspeech...\n") | |
save_dir = os.path.join(output_path, "ljspeech") | |
ljspeech_path = dataset_path | |
wave_files = glob(ljspeech_path + "/wavs/*.wav") | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
if has_existed(train_output_file): | |
return | |
utts = [] | |
for wave_file in tqdm(wave_files): | |
res = { | |
"Dataset": "ljspeech", | |
"Singer": "female1", | |
"Uid": "{}".format(wave_file.split("/")[-1].split(".")[0]), | |
} | |
res["Path"] = wave_file | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if duration <= 1e-8: | |
continue | |
utts.append(res) | |
test_length = len(utts) // 20 | |
train_utts = [] | |
train_index_count = 0 | |
train_total_duration = 0 | |
for i in tqdm(range(len(utts) - test_length)): | |
tmp = utts[i] | |
tmp["index"] = train_index_count | |
train_index_count += 1 | |
train_total_duration += tmp["Duration"] | |
train_utts.append(tmp) | |
test_utts = [] | |
test_index_count = 0 | |
test_total_duration = 0 | |
for i in tqdm(range(len(utts) - test_length, len(utts))): | |
tmp = utts[i] | |
tmp["index"] = test_index_count | |
test_index_count += 1 | |
test_total_duration += tmp["Duration"] | |
test_utts.append(tmp) | |
print("#Train = {}, #Test = {}".format(len(train_utts), len(test_utts))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save | |
os.makedirs(save_dir, exist_ok=True) | |
with open(train_output_file, "w") as f: | |
json.dump(train_utts, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test_utts, f, indent=4, ensure_ascii=False) | |