Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import random | |
import os | |
import json | |
import torchaudio | |
from tqdm import tqdm | |
from glob import glob | |
from collections import defaultdict | |
from utils.util import has_existed | |
from preprocessors import GOLDEN_TEST_SAMPLES | |
def get_test_folders(): | |
golden_samples = GOLDEN_TEST_SAMPLES["kising"] | |
# every item is a string | |
golden_folders = [s.split("_")[:1] for s in golden_samples] | |
# folder, eg: 422 | |
return golden_folders | |
def KiSing_statistics(data_dir): | |
folders = [] | |
folders2utts = defaultdict(list) | |
folder_infos = glob(data_dir + "/*") | |
for folder_info in folder_infos: | |
folder = folder_info.split("/")[-1] | |
folders.append(folder) | |
utts = glob(folder_info + "/*.wav") | |
for utt in utts: | |
uid = utt.split("/")[-1].split(".")[0] | |
folders2utts[folder].append(uid) | |
unique_folders = list(set(folders)) | |
unique_folders.sort() | |
print("KiSing: {} unique songs".format(len(unique_folders))) | |
return folders2utts | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing test samples for KiSing...\n") | |
save_dir = os.path.join(output_path, "kising") | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
if has_existed(test_output_file): | |
return | |
# Load | |
KiSing_dir = dataset_path | |
folders2utts = KiSing_statistics(KiSing_dir) | |
test_folders = get_test_folders() | |
# We select songs of standard samples as test songs | |
train = [] | |
test = [] | |
train_index_count = 0 | |
test_index_count = 0 | |
train_total_duration = 0 | |
test_total_duration = 0 | |
folder_names = list(folders2utts.keys()) | |
for chosen_folder in folder_names: | |
for chosen_uid in folders2utts[chosen_folder]: | |
res = { | |
"Dataset": "kising", | |
"Singer": "female1", | |
"Uid": "{}_{}".format(chosen_folder, chosen_uid), | |
} | |
res["Path"] = "{}/{}.wav".format(chosen_folder, chosen_uid) | |
res["Path"] = os.path.join(KiSing_dir, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if ([chosen_folder]) in test_folders: | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
else: | |
res["index"] = train_index_count | |
train_total_duration += duration | |
train.append(res) | |
train_index_count += 1 | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save | |
os.makedirs(save_dir, exist_ok=True) | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |