mj-new
Updated dashboard and util scripts
c3c241a
raw
history blame
10.5 kB
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import seaborn as sns
import os
import json
from utils import read_reports, dict_to_multindex_df
#add_test_split_stats_from_secret_dataset, dict_to_multindex_df_all_splits
from utils import extract_stats_to_agg, extract_stats_all_splits, extract_stats_for_dataset_card
from constants import BIGOS_INFO, PELCRA_INFO, ABOUT_INFO
from datasets import get_dataset_config_names
# PL ASR BIGOS analysis
# PL ASR Diagnostic analysis
# PELCRA analysis
# TODO - compare the datasets
st.set_page_config(layout="wide")
metrics_size_audio = ["samples", "audio[h]", "speakers"]
metrics_size_text = ["samples", "words", "chars"]
metrics_size = metrics_size_audio + metrics_size_text
metrics_features_text_uniq = ["utts_unique", "words_unique", "chars_unique"]
metrics_features_speech_rate = ["words_per_sec", "chars_per_sec"]
metrics_features_duration = ["average_audio_duration[s]", "average_utterance_length[words]", "average_utterance_length[chars]"]
metrics_features_meta = ["meta_cov_gender", "meta_cov_age"]
metrics_features = metrics_features_text_uniq + metrics_features_speech_rate + metrics_features_duration + metrics_features_meta
about, analysis_bigos, analysis_bigos_diagnostic, analysis_bigos_pelcra = st.tabs(["About BIGOS datasets", "BIGOS V2 analysis", "BIGOS V2 diagnostic", "PELCRA for BIGOS analysis"])
#analysis_bigos_diagnostic
#########################################BIGOS################################################
with about:
st.title("About BIGOS project")
st.markdown(ABOUT_INFO, unsafe_allow_html=True)
# TODO - load and display about BIGOS benchmark
with analysis_bigos:
dataset_name = "amu-cai/pl-asr-bigos-v2"
dataset_short_name = "BIGOS"
dataset_version = "V2"
dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
# remove "all" subset, which is always the last config type
dataset_configs.pop()
print(dataset_configs)
# read the reports for public and secret datasets
[stats_dict_public, contents_dict_public] = read_reports(dataset_name)
# update the metrics for test split with the secret dataset statistics
#stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)
# extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
#st.header("Summary statistics")
st.header("Dataset level metrics")
df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)
# split dataframe into separate dataframes for easier analysis and visualization
st.subheader("Audio content size")
df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio]
st.dataframe(df_sum_stats_audio)
st.subheader("Text content size")
df_sum_stats_text = df_sum_stats_agg[metrics_size_text]
st.dataframe(df_sum_stats_text)
df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)
st.subheader("Utterances, vocabulary and alphabet space")
df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq]
st.dataframe(df_sum_stats_feats_text)
st.subheader("Speech rates")
df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate]
st.dataframe(df_sum_stats_feats_speech_rate)
st.subheader("Average utterance lengths and audio duration")
df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration]
st.dataframe(df_sum_stats_feats_durations)
st.subheader("Metadata coverage")
df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta]
st.dataframe(df_sum_stats_feats_meta)
st.header("BIGOS subsets (source datasets) cards")
for subset in dataset_configs:
st.subheader("Dataset card for: {}".format(subset))
df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
st.dataframe(df_metrics_subset_size)
df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
st.dataframe(df_metrics_subset_features)
with analysis_bigos_diagnostic:
dataset_name = "amu-cai/pl-asr-bigos-v2-diagnostic"
dataset_short_name = "BIGOS diagnostic"
dataset_version = "V2"
dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
# remove "all" subset, which is always the last config type
dataset_configs.pop()
print(dataset_configs)
# read the reports for public and secret datasets
[stats_dict_public, contents_dict_public] = read_reports(dataset_name)
# update the metrics for test split with the secret dataset statistics
#stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)
# extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
#st.header("Summary statistics")
st.header("Dataset level metrics")
df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)
# split dataframe into separate dataframes for easier analysis and visualization
st.subheader("Audio content size")
df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio]
st.dataframe(df_sum_stats_audio)
st.subheader("Text content size")
df_sum_stats_text = df_sum_stats_agg[metrics_size_text]
st.dataframe(df_sum_stats_text)
df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)
st.subheader("Utterances, vocabulary and alphabet space")
df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq]
st.dataframe(df_sum_stats_feats_text)
st.subheader("Speech rates")
df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate]
st.dataframe(df_sum_stats_feats_speech_rate)
st.subheader("Average utterance lengths and audio duration")
df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration]
st.dataframe(df_sum_stats_feats_durations)
st.subheader("Metadata coverage")
df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta]
st.dataframe(df_sum_stats_feats_meta)
st.header("BIGOS subsets (source datasets) cards")
for subset in dataset_configs:
st.subheader("Dataset card for: {}".format(subset))
df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
st.dataframe(df_metrics_subset_size)
df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
st.dataframe(df_metrics_subset_features)
#########################################PELCRA################################################
with analysis_bigos_pelcra:
dataset_name = "pelcra/pl-asr-pelcra-for-bigos"
dataset_short_name = "PELCRA"
# local version with granted gated access
#dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
# remove "all" subset, which is always the last config type
#dataset_configs.pop()
# remote version with hardcoded access
dataset_configs = ['ul-diabiz_poleval-22', 'ul-spokes_mix_emo-18', 'ul-spokes_mix_luz-18', 'ul-spokes_mix_parl-18', 'ul-spokes_biz_bio-23', 'ul-spokes_biz_int-23', 'ul-spokes_biz_luz-23', 'ul-spokes_biz_pod-23', 'ul-spokes_biz_pres-23', 'ul-spokes_biz_vc-23', 'ul-spokes_biz_vc2-23', 'ul-spokes_biz_wyw-23']
print(dataset_configs)
# read the reports for public and secret datasets
[stats_dict_public, contents_dict_public] = read_reports(dataset_name)
# update the metrics for test split with the secret dataset statistics
#stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)
# extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
#st.header("Summary statistics")
st.header("Dataset level metrics")
df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)
# split dataframe into separate dataframes for easier analysis and visualization
st.subheader("Audio content size")
df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio]
st.dataframe(df_sum_stats_audio)
st.subheader("Text content size")
df_sum_stats_text = df_sum_stats_agg[metrics_size_text]
st.dataframe(df_sum_stats_text)
df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)
st.subheader("Utterances, vocabulary and alphabet space")
df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq]
st.dataframe(df_sum_stats_feats_text)
st.subheader("Speech rates")
df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate]
st.dataframe(df_sum_stats_feats_speech_rate)
st.subheader("Average utterance lengths and audio duration")
df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration]
st.dataframe(df_sum_stats_feats_durations)
st.subheader("Metadata coverage")
df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta]
st.dataframe(df_sum_stats_feats_meta)
st.header("BIGOS subsets (source datasets) cards")
for subset in dataset_configs:
st.subheader("Dataset card for: {}".format(subset))
df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
st.dataframe(df_metrics_subset_size)
df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
st.dataframe(df_metrics_subset_features)