import pandas as pd import streamlit as st import matplotlib.pyplot as plt import seaborn as sns import os import json from utils import read_reports, dict_to_multindex_df #add_test_split_stats_from_secret_dataset, dict_to_multindex_df_all_splits from utils import extract_stats_to_agg, extract_stats_all_splits, extract_stats_for_dataset_card from constants import BIGOS_INFO, PELCRA_INFO, ABOUT_INFO from datasets import get_dataset_config_names # PL ASR BIGOS analysis # PL ASR Diagnostic analysis # PELCRA analysis # TODO - compare the datasets st.set_page_config(layout="wide") metrics_size_audio = ["samples", "audio[h]", "speakers"] metrics_size_text = ["samples", "words", "chars"] metrics_size = metrics_size_audio + metrics_size_text metrics_features_text_uniq = ["utts_unique", "words_unique", "chars_unique"] metrics_features_speech_rate = ["words_per_sec", "chars_per_sec"] metrics_features_duration = ["average_audio_duration[s]", "average_utterance_length[words]", "average_utterance_length[chars]"] metrics_features_meta = ["meta_cov_gender", "meta_cov_age"] metrics_features = metrics_features_text_uniq + metrics_features_speech_rate + metrics_features_duration + metrics_features_meta about, analysis_bigos, analysis_bigos_diagnostic, analysis_bigos_pelcra = st.tabs(["About BIGOS datasets", "BIGOS V2 analysis", "BIGOS V2 diagnostic", "PELCRA for BIGOS analysis"]) #analysis_bigos_diagnostic #########################################BIGOS################################################ with about: st.title("About BIGOS project") st.markdown(ABOUT_INFO, unsafe_allow_html=True) # TODO - load and display about BIGOS benchmark with analysis_bigos: dataset_name = "amu-cai/pl-asr-bigos-v2" dataset_short_name = "BIGOS" dataset_version = "V2" dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True) # remove "all" subset, which is always the last config type dataset_configs.pop() print(dataset_configs) # read the reports for public and secret datasets [stats_dict_public, contents_dict_public] = read_reports(dataset_name) # update the metrics for test split with the secret dataset statistics #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret) df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False) df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True) # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization #st.header("Summary statistics") st.header("Dataset level metrics") df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size) # split dataframe into separate dataframes for easier analysis and visualization st.subheader("Audio content size") df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio] st.dataframe(df_sum_stats_audio) st.subheader("Text content size") df_sum_stats_text = df_sum_stats_agg[metrics_size_text] st.dataframe(df_sum_stats_text) df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features) st.subheader("Utterances, vocabulary and alphabet space") df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq] st.dataframe(df_sum_stats_feats_text) st.subheader("Speech rates") df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate] st.dataframe(df_sum_stats_feats_speech_rate) st.subheader("Average utterance lengths and audio duration") df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration] st.dataframe(df_sum_stats_feats_durations) st.subheader("Metadata coverage") df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta] st.dataframe(df_sum_stats_feats_meta) st.header("BIGOS subsets (source datasets) cards") for subset in dataset_configs: st.subheader("Dataset card for: {}".format(subset)) df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True) st.dataframe(df_metrics_subset_size) df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False) st.dataframe(df_metrics_subset_features) with analysis_bigos_diagnostic: dataset_name = "amu-cai/pl-asr-bigos-v2-diagnostic" dataset_short_name = "BIGOS diagnostic" dataset_version = "V2" dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True) # remove "all" subset, which is always the last config type dataset_configs.pop() print(dataset_configs) # read the reports for public and secret datasets [stats_dict_public, contents_dict_public] = read_reports(dataset_name) # update the metrics for test split with the secret dataset statistics #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret) df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False) df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True) # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization #st.header("Summary statistics") st.header("Dataset level metrics") df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size) # split dataframe into separate dataframes for easier analysis and visualization st.subheader("Audio content size") df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio] st.dataframe(df_sum_stats_audio) st.subheader("Text content size") df_sum_stats_text = df_sum_stats_agg[metrics_size_text] st.dataframe(df_sum_stats_text) df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features) st.subheader("Utterances, vocabulary and alphabet space") df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq] st.dataframe(df_sum_stats_feats_text) st.subheader("Speech rates") df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate] st.dataframe(df_sum_stats_feats_speech_rate) st.subheader("Average utterance lengths and audio duration") df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration] st.dataframe(df_sum_stats_feats_durations) st.subheader("Metadata coverage") df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta] st.dataframe(df_sum_stats_feats_meta) st.header("BIGOS subsets (source datasets) cards") for subset in dataset_configs: st.subheader("Dataset card for: {}".format(subset)) df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True) st.dataframe(df_metrics_subset_size) df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False) st.dataframe(df_metrics_subset_features) #########################################PELCRA################################################ with analysis_bigos_pelcra: dataset_name = "pelcra/pl-asr-pelcra-for-bigos" dataset_short_name = "PELCRA" # local version with granted gated access #dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True) # remove "all" subset, which is always the last config type #dataset_configs.pop() # remote version with hardcoded access dataset_configs = ['ul-diabiz_poleval-22', 'ul-spokes_mix_emo-18', 'ul-spokes_mix_luz-18', 'ul-spokes_mix_parl-18', 'ul-spokes_biz_bio-23', 'ul-spokes_biz_int-23', 'ul-spokes_biz_luz-23', 'ul-spokes_biz_pod-23', 'ul-spokes_biz_pres-23', 'ul-spokes_biz_vc-23', 'ul-spokes_biz_vc2-23', 'ul-spokes_biz_wyw-23'] print(dataset_configs) # read the reports for public and secret datasets [stats_dict_public, contents_dict_public] = read_reports(dataset_name) # update the metrics for test split with the secret dataset statistics #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret) df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False) df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True) # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization #st.header("Summary statistics") st.header("Dataset level metrics") df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size) # split dataframe into separate dataframes for easier analysis and visualization st.subheader("Audio content size") df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio] st.dataframe(df_sum_stats_audio) st.subheader("Text content size") df_sum_stats_text = df_sum_stats_agg[metrics_size_text] st.dataframe(df_sum_stats_text) df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features) st.subheader("Utterances, vocabulary and alphabet space") df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq] st.dataframe(df_sum_stats_feats_text) st.subheader("Speech rates") df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate] st.dataframe(df_sum_stats_feats_speech_rate) st.subheader("Average utterance lengths and audio duration") df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration] st.dataframe(df_sum_stats_feats_durations) st.subheader("Metadata coverage") df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta] st.dataframe(df_sum_stats_feats_meta) st.header("BIGOS subsets (source datasets) cards") for subset in dataset_configs: st.subheader("Dataset card for: {}".format(subset)) df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True) st.dataframe(df_metrics_subset_size) df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False) st.dataframe(df_metrics_subset_features)