Spaces:
Running
Running
import shutil | |
from haystack.document_stores import FAISSDocumentStore | |
from haystack.nodes import EmbeddingRetriever | |
from haystack.pipelines import Pipeline | |
import streamlit as st | |
from app_utils.entailment_checker import EntailmentChecker | |
from app_utils.config import ( | |
STATEMENTS_PATH, | |
INDEX_DIR, | |
RETRIEVER_MODEL, | |
RETRIEVER_MODEL_FORMAT, | |
NLI_MODEL, | |
) | |
def load_statements(): | |
"""Load statements from file""" | |
with open(STATEMENTS_PATH) as fin: | |
statements = [ | |
line.strip() for line in fin.readlines() if not line.startswith("#") | |
] | |
return statements | |
# cached to make index and models load only at start | |
def start_haystack(): | |
""" | |
load document store, retriever, reader and create pipeline | |
""" | |
shutil.copy(f"{INDEX_DIR}/faiss_document_store.db", ".") | |
document_store = FAISSDocumentStore( | |
faiss_index_path=f"{INDEX_DIR}/my_faiss_index.faiss", | |
faiss_config_path=f"{INDEX_DIR}/my_faiss_index.json", | |
) | |
print(f"Index size: {document_store.get_document_count()}") | |
retriever = EmbeddingRetriever( | |
document_store=document_store, | |
embedding_model=RETRIEVER_MODEL, | |
model_format=RETRIEVER_MODEL_FORMAT, | |
) | |
entailment_checker = EntailmentChecker(model_name_or_path=NLI_MODEL, use_gpu=False) | |
pipe = Pipeline() | |
pipe.add_node(component=retriever, name="retriever", inputs=["Query"]) | |
pipe.add_node(component=entailment_checker, name="ec", inputs=["retriever"]) | |
return pipe | |
pipe = start_haystack() | |
# the pipeline is not included as parameter of the following function, | |
# because it is difficult to cache | |
def query(statement: str, retriever_top_k: int = 5): | |
"""Run query and verify statement""" | |
params = {"retriever": {"top_k": retriever_top_k}} | |
results = pipe.run(statement, params=params) | |
scores, agg_con, agg_neu, agg_ent = 0, 0, 0, 0 | |
for i, doc in enumerate(results["documents"]): | |
scores += doc.score | |
ent_info = doc.meta["entailment_info"] | |
con, neu, ent = ( | |
ent_info["contradiction"], | |
ent_info["neutral"], | |
ent_info["entailment"], | |
) | |
agg_con += con * doc.score | |
agg_neu += neu * doc.score | |
agg_ent += ent * doc.score | |
# if in the first documents there is a strong evidence of entailment/contradiction, | |
# there is no need to consider less relevant documents | |
if max(agg_con, agg_ent) / scores > 0.5: | |
results["documents"] = results["documents"][: i + 1] | |
break | |
results["agg_entailment_info"] = { | |
"contradiction": float(round(agg_con / scores, 2)), | |
"neutral": float(round(agg_neu / scores, 2)), | |
"entailment": float(round(agg_ent / scores, 2)), | |
} | |
return results | |