fact-checking-rocks / app_utils /backend_utils.py
anakin87's picture
update streamlit and other libs; better caching; fix graphical appearance
f79211f
raw
history blame
2.82 kB
import shutil
from typing import List
from haystack import Document
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever, PromptNode
from haystack.pipelines import Pipeline
import streamlit as st
from app_utils.entailment_checker import EntailmentChecker
from app_utils.config import (
STATEMENTS_PATH,
INDEX_DIR,
RETRIEVER_MODEL,
RETRIEVER_MODEL_FORMAT,
NLI_MODEL,
PROMPT_MODEL,
)
@st.cache_data
def load_statements():
"""Load statements from file"""
with open(STATEMENTS_PATH) as fin:
statements = [
line.strip() for line in fin.readlines() if not line.startswith("#")
]
return statements
# cached to make index and models load only at start
@st.cache_resource
def start_haystack():
"""
load document store, retriever, entailment checker and create pipeline
"""
shutil.copy(f"{INDEX_DIR}/faiss_document_store.db", ".")
document_store = FAISSDocumentStore(
faiss_index_path=f"{INDEX_DIR}/my_faiss_index.faiss",
faiss_config_path=f"{INDEX_DIR}/my_faiss_index.json",
)
print(f"Index size: {document_store.get_document_count()}")
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model=RETRIEVER_MODEL,
model_format=RETRIEVER_MODEL_FORMAT,
)
entailment_checker = EntailmentChecker(
model_name_or_path=NLI_MODEL,
use_gpu=False,
entailment_contradiction_threshold=0.5,
)
pipe = Pipeline()
pipe.add_node(component=retriever, name="retriever", inputs=["Query"])
pipe.add_node(component=entailment_checker, name="ec", inputs=["retriever"])
prompt_node = PromptNode(model_name_or_path=PROMPT_MODEL, max_length=150)
return pipe, prompt_node
pipe, prompt_node = start_haystack()
# the pipeline is not included as parameter of the following function,
# because it is difficult to cache
@st.cache_resource
def check_statement(statement: str, retriever_top_k: int = 5):
"""Run query and verify statement"""
params = {"retriever": {"top_k": retriever_top_k}}
return pipe.run(statement, params=params)
@st.cache_resource
def explain_using_llm(
statement: str, documents: List[Document], entailment_or_contradiction: str
) -> str:
"""Explain entailment/contradiction, by prompting a LLM"""
premise = " \n".join([doc.content.replace("\n", ". ") for doc in documents])
if entailment_or_contradiction == "entailment":
verb = "entails"
elif entailment_or_contradiction == "contradiction":
verb = "contradicts"
prompt = f"Premise: {premise}; Hypothesis: {statement}; Please explain in detail why the Premise {verb} the Hypothesis. Step by step Explanation:"
print(prompt)
return prompt_node(prompt)[0]