Spaces:
Running
Running
import shutil | |
from typing import List | |
from haystack import Document | |
from haystack.document_stores import FAISSDocumentStore | |
from haystack.nodes import EmbeddingRetriever, PromptNode | |
from haystack.pipelines import Pipeline | |
import streamlit as st | |
from app_utils.entailment_checker import EntailmentChecker | |
from app_utils.config import ( | |
STATEMENTS_PATH, | |
INDEX_DIR, | |
RETRIEVER_MODEL, | |
RETRIEVER_MODEL_FORMAT, | |
NLI_MODEL, | |
PROMPT_MODEL, | |
) | |
def load_statements(): | |
"""Load statements from file""" | |
with open(STATEMENTS_PATH) as fin: | |
statements = [ | |
line.strip() for line in fin.readlines() if not line.startswith("#") | |
] | |
return statements | |
# cached to make index and models load only at start | |
def start_haystack(): | |
""" | |
load document store, retriever, entailment checker and create pipeline | |
""" | |
shutil.copy(f"{INDEX_DIR}/faiss_document_store.db", ".") | |
document_store = FAISSDocumentStore( | |
faiss_index_path=f"{INDEX_DIR}/my_faiss_index.faiss", | |
faiss_config_path=f"{INDEX_DIR}/my_faiss_index.json", | |
) | |
print(f"Index size: {document_store.get_document_count()}") | |
retriever = EmbeddingRetriever( | |
document_store=document_store, | |
embedding_model=RETRIEVER_MODEL, | |
model_format=RETRIEVER_MODEL_FORMAT, | |
) | |
entailment_checker = EntailmentChecker( | |
model_name_or_path=NLI_MODEL, | |
use_gpu=False, | |
entailment_contradiction_threshold=0.5, | |
) | |
pipe = Pipeline() | |
pipe.add_node(component=retriever, name="retriever", inputs=["Query"]) | |
pipe.add_node(component=entailment_checker, name="ec", inputs=["retriever"]) | |
prompt_node = PromptNode(model_name_or_path=PROMPT_MODEL, max_length=150) | |
return pipe, prompt_node | |
pipe, prompt_node = start_haystack() | |
# the pipeline is not included as parameter of the following function, | |
# because it is difficult to cache | |
def check_statement(statement: str, retriever_top_k: int = 5): | |
"""Run query and verify statement""" | |
params = {"retriever": {"top_k": retriever_top_k}} | |
return pipe.run(statement, params=params) | |
def explain_using_llm( | |
statement: str, documents: List[Document], entailment_or_contradiction: str | |
) -> str: | |
"""Explain entailment/contradiction, by prompting a LLM""" | |
premise = " \n".join([doc.content.replace("\n", ". ") for doc in documents]) | |
if entailment_or_contradiction == "entailment": | |
verb = "entails" | |
elif entailment_or_contradiction == "contradiction": | |
verb = "contradicts" | |
prompt = f"Premise: {premise}; Hypothesis: {statement}; Please explain in detail why the Premise {verb} the Hypothesis. Step by step Explanation:" | |
print(prompt) | |
return prompt_node(prompt)[0] | |