import streamlit as st import pandas as pd import plotly.graph_objects as go entailment_html_messages = { "entailment": 'The knowledge base seems to confirm your statement', "contradiction": 'The knowledge base seems to contradict your statement', "neutral": 'The knowledge base is neutral about your statement', } def build_sidebar(): st.sidebar.markdown('# Fact checking 🎸 Rocks!') st.sidebar.markdown('*Fact checking baseline combining dense retrieval and textual entailment*') st.sidebar.markdown('[Github project](https://github.com/anakin87/fact-checking-rocks) - Based on [Haystack](https://github.com/deepset-ai/haystack)') st.sidebar.markdown('Data crawled from [Wikipedia](https://en.wikipedia.org/wiki/List_of_mainstream_rock_performers).', unsafe_allow_html=True) def set_state_if_absent(key, value): if key not in st.session_state: st.session_state[key] = value # Small callback to reset the interface in case the text of the question changes def reset_results(*args): st.session_state.answer = None st.session_state.results = None st.session_state.raw_json = None def create_ternary_plot(entailment_data): hover_text = "" for label, value in entailment_data.items(): hover_text += f"{label}: {value}
" fig = go.Figure( go.Scatterternary( { "cliponaxis": False, "mode": "markers", "a": [i for i in map(lambda x: x["entailment"], [entailment_data])], "b": [i for i in map(lambda x: x["contradiction"], [entailment_data])], "c": [i for i in map(lambda x: x["neutral"], [entailment_data])], "hoverinfo": "text", "text": hover_text, "marker": { "color": "#636efa", "size": [0.01], "sizemode": "area", "sizeref": 2.5e-05, "symbol": "circle", }, } ) ) fig.update_layout( { "ternary": { "sum": 1, "aaxis": makeAxis("Entailment", 0), "baxis": makeAxis("
Contradiction", 45), "caxis": makeAxis("
Neutral", -45), } } ) return fig def makeAxis(title, tickangle): return { "title": title, "titlefont": {"size": 20}, "tickangle": tickangle, "tickcolor": "rgba(0,0,0,0)", "ticklen": 5, "showline": False, "showgrid": True, } def highlight_cols(s): coldict = {"con": "#FFA07A", "neu": "#E5E4E2", "ent": "#a9d39e"} if s.name in coldict.keys(): return ["background-color: {}".format(coldict[s.name])] * len(s) return [""] * len(s) def create_df_for_relevant_snippets(docs): rows = [] urls = {} for doc in docs: row = { "Title": doc.meta["name"], "Relevance": f"{doc.score:.3f}", "con": f"{doc.meta['entailment_info']['contradiction']:.2f}", "neu": f"{doc.meta['entailment_info']['neutral']:.2f}", "ent": f"{doc.meta['entailment_info']['entailment']:.2f}", "Content": doc.content, } urls[doc.meta["name"]] = doc.meta["url"] rows.append(row) df = pd.DataFrame(rows).style.apply(highlight_cols) return df, urls