from typing import List, Optional from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import torch from haystack.nodes.base import BaseComponent from haystack.modeling.utils import initialize_device_settings from haystack.schema import Document, Answer, Span class EntailmentChecker(BaseComponent): """ This node checks the entailment between every document content and the query. It enrichs the documents metadata with entailment_info """ outgoing_edges = 1 def __init__( self, model_name_or_path: str = "roberta-large-mnli", model_version: Optional[str] = None, tokenizer: Optional[str] = None, use_gpu: bool = True, batch_size: int = 16, ): """ Load a Natural Language Inference model from Transformers. :param model_name_or_path: Directory of a saved model or the name of a public model. See https://huggingface.co/models for full list of available models. :param model_version: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash. :param tokenizer: Name of the tokenizer (usually the same as model) :param use_gpu: Whether to use GPU (if available). # :param batch_size: Number of Documents to be processed at a time. """ super().__init__() self.devices, _ = initialize_device_settings(use_cuda=use_gpu, multi_gpu=False) tokenizer = tokenizer or model_name_or_path self.tokenizer = AutoTokenizer.from_pretrained(tokenizer) self.model = AutoModelForSequenceClassification.from_pretrained( pretrained_model_name_or_path=model_name_or_path, revision=model_version ) self.batch_size = batch_size self.model.to(str(self.devices[0])) id2label = AutoConfig.from_pretrained(model_name_or_path).id2label self.labels = [id2label[k].lower() for k in sorted(id2label)] if "entailment" not in self.labels: raise ValueError( "The model config must contain entailment value in the id2label dict." ) def run(self, query: str, documents: List[Document]): for doc in documents: entailment_dict = self.get_entailment(premise=doc.content, hypotesis=query) doc.meta["entailment_info"] = entailment_dict return {"documents": documents}, "output_1" def run_batch(): pass def get_entailment(self, premise, hypotesis): with torch.no_grad(): inputs = self.tokenizer( f"{premise}{self.tokenizer.sep_token}{hypotesis}", return_tensors="pt" ).to(self.devices[0]) out = self.model(**inputs) logits = out.logits probs = ( torch.nn.functional.softmax(logits, dim=-1)[0, :].cpu().detach().numpy() ) entailment_dict = {k.lower(): v for k, v in zip(self.labels, probs)} return entailment_dict