# inspired by https://github.com/deepset-ai/haystack/blob/master/ui/webapp.py import time import streamlit as st import logging from json import JSONDecodeError from markdown import markdown from annotated_text import annotation from urllib.parse import unquote import random from app_utils.backend_utils import load_questions, query from app_utils.frontend_utils import (set_state_if_absent, reset_results, SIDEBAR_STYLE, TWIN_PEAKS_IMG_SRC, LAURA_PALMER_IMG_SRC, SPOTIFY_IFRAME) from app_utils.config import RETRIEVER_TOP_K, READER_TOP_K, LOW_RELEVANCE_THRESHOLD def main(): questions = load_questions() # Persistent state set_state_if_absent('question', "Where is Twin Peaks?") set_state_if_absent('answer', '') set_state_if_absent('results', None) set_state_if_absent('raw_json', None) set_state_if_absent('random_question_requested', False) ## SIDEBAR st.markdown(SIDEBAR_STYLE, unsafe_allow_html=True) st.sidebar.header("Who killed Laura Palmer?") st.sidebar.image(TWIN_PEAKS_IMG_SRC) st.sidebar.markdown(f"""
Twin Peaks Question Answering system
""", unsafe_allow_html=True) # spotify webplayer st.sidebar.markdown(SPOTIFY_IFRAME, unsafe_allow_html=True) ## MAIN CONTAINER st.write("# Who killed Laura Palmer?") st.write("### The first Twin Peaks Question Answering system!") st.markdown(""" Ask any question about [Twin Peaks] (https://twinpeaks.fandom.com/wiki/Twin_Peaks) and see if the AI ββcan find an answer... *Note: do not use keywords, but full-fledged questions.* """) # Search bar question = st.text_input("", value=st.session_state.question, max_chars=100, on_change=reset_results) col1, col2 = st.columns(2) col1.markdown( "", unsafe_allow_html=True) col2.markdown( "", unsafe_allow_html=True) # Run button run_pressed = col1.button("Run") # Random question button if col2.button("Random question"): reset_results() question = random.choice(questions) # Avoid picking the same question twice (the change is not visible on the UI) while question == st.session_state.question: question = random.choice(questions) st.session_state.question = question st.session_state.random_question_requested = True # Re-runs the script setting the random question as the textbox value # Unfortunately necessary as the Random Question button is _below_ the textbox raise st.script_runner.RerunException( st.script_request_queue.RerunData(None)) else: st.session_state.random_question_requested = False run_query = (run_pressed or question != st.session_state.question) \ and not st.session_state.random_question_requested # Get results for query if run_query and question: time_start = time.time() reset_results() st.session_state.question = question with st.spinner("π§ Performing neural search on documents..."): try: st.session_state.results = query( question, RETRIEVER_TOP_K, READER_TOP_K) time_end = time.time() print(f'elapsed time: {time_end - time_start}') except JSONDecodeError as je: st.error( "π An error occurred reading the results. Is the document store working?") return except Exception as e: logging.exception(e) st.error("π An error occurred during the request.") return # Display results if st.session_state.results: st.write("## Results:") alert_irrelevance = True if len(st.session_state.results['answers']) == 0: st.info("""π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!""") for result in st.session_state.results['answers']: result = result.to_dict() if result["answer"]: if alert_irrelevance and result['score'] < LOW_RELEVANCE_THRESHOLD: alert_irrelevance = False st.write("""