Spaces:
Sleeping
Sleeping
import streamlit as st | |
from ctransformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Configuration de la page Streamlit | |
st.set_page_config(page_title="Assistant Mathématique", page_icon="🔢", layout="wide") | |
def load_model(): | |
"""Charge le modèle et le tokenizer (mise en cache par Streamlit)""" | |
model_name = "analist/deepseek-math-gguf" # Remplacez par votre nom de modèle | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
"analist/deepseek-math-gguf", model_file="model.gguf" | |
) | |
return model, tokenizer | |
def generate_response(prompt, model, tokenizer): | |
"""Génère une réponse à partir du prompt""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=1200, | |
temperature=0.7, | |
do_sample=True, | |
top_p=0.95, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response.split("### Response:")[-1].strip() | |
def format_prompt(question): | |
"""Formate le prompt comme pendant l'entraînement""" | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. | |
Write a response that appropriately completes the request. | |
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response. | |
Your goal is to teach maths a beginner so make it friendly and accessible. Break down your chain of thoughts as for him/her to understand. | |
### Instruction: | |
You are a maths expert with advanced knowledge in pedagogy, arithmetics, geometry, analysis, calculus. | |
Please answer the following questions. | |
### Question: | |
{question} | |
### Response:""" | |
def main(): | |
# Titre de l'application | |
st.title("🔢 Assistant Mathématique") | |
st.markdown("---") | |
# Chargement du modèle | |
with st.spinner("Chargement du modèle..."): | |
model, tokenizer = load_model() | |
# Initialisation de l'historique des messages dans la session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Affichage de l'historique des messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Zone de saisie utilisateur | |
if question := st.chat_input("Posez votre question mathématique..."): | |
# Afficher la question de l'utilisateur | |
with st.chat_message("user"): | |
st.markdown(question) | |
st.session_state.messages.append({"role": "user", "content": question}) | |
# Générer et afficher la réponse | |
with st.chat_message("assistant"): | |
with st.spinner("Réflexion en cours..."): | |
prompt = format_prompt(question) | |
response = generate_response(prompt, model, tokenizer) | |
response = response.replace('<think>', '') | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# Bouton pour effacer l'historique | |
if st.sidebar.button("Effacer l'historique"): | |
st.session_state.messages = [] | |
st.rerun() | |
# Informations dans la barre latérale | |
with st.sidebar: | |
st.markdown("### À propos") | |
st.markdown(""" | |
Cet assistant utilise un modèle DeepSeek spécialement entraîné pour: | |
- Expliquer les concepts mathématiques | |
- Résoudre des problèmes étape par étape | |
- Fournir des explications claires et adaptées aux débutants | |
""") | |
if __name__ == "__main__": | |
main() |