Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
"analist/deepseek-math-gguf", model_file="model.gguf"
|
15 |
-
)
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
17 |
-
return model, tokenizer
|
18 |
-
|
19 |
-
def generate_response(prompt, model, tokenizer):
|
20 |
-
"""Génère une réponse à partir du prompt"""
|
21 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
22 |
-
|
23 |
-
with torch.no_grad():
|
24 |
-
outputs = model.generate(
|
25 |
-
**inputs,
|
26 |
-
max_new_tokens=1200,
|
27 |
-
temperature=0.7,
|
28 |
-
do_sample=True,
|
29 |
-
top_p=0.95,
|
30 |
)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def format_prompt(question):
|
36 |
-
"""Formate le prompt comme pendant l'entraînement"""
|
37 |
-
return f"""Below is an instruction that describes a task, paired with an input that provides further context.
|
38 |
Write a response that appropriately completes the request.
|
39 |
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
|
40 |
Your goal is to teach maths a beginner so make it friendly and accessible. Break down your chain of thoughts as for him/her to understand.
|
@@ -46,56 +26,42 @@ Please answer the following questions.
|
|
46 |
### Question:
|
47 |
{question}
|
48 |
|
49 |
-
### Response:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def main():
|
52 |
-
|
53 |
-
st.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Générer et afficher la réponse
|
77 |
-
with st.chat_message("assistant"):
|
78 |
-
with st.spinner("Réflexion en cours..."):
|
79 |
-
prompt = format_prompt(question)
|
80 |
-
response = generate_response(prompt, model, tokenizer)
|
81 |
-
response = response.replace('<think>', '')
|
82 |
-
st.markdown(response)
|
83 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
84 |
-
|
85 |
-
# Bouton pour effacer l'historique
|
86 |
-
if st.sidebar.button("Effacer l'historique"):
|
87 |
-
st.session_state.messages = []
|
88 |
-
st.rerun()
|
89 |
-
|
90 |
-
# Informations dans la barre latérale
|
91 |
-
with st.sidebar:
|
92 |
-
st.markdown("### À propos")
|
93 |
-
st.markdown("""
|
94 |
-
Cet assistant utilise un modèle DeepSeek spécialement entraîné pour:
|
95 |
-
- Expliquer les concepts mathématiques
|
96 |
-
- Résoudre des problèmes étape par étape
|
97 |
-
- Fournir des explications claires et adaptées aux débutants
|
98 |
-
""")
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
class MathTutor:
|
6 |
+
def __init__(self):
|
7 |
+
self.model_id = "your-username/deepseek-math-tutor-cpu"
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
9 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
self.model_id,
|
11 |
+
torch_dtype=torch.float32,
|
12 |
+
low_cpu_mem_usage=True,
|
13 |
+
device_map="cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
)
|
15 |
+
|
16 |
+
def get_response(self, question):
|
17 |
+
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context.
|
|
|
|
|
|
|
|
|
18 |
Write a response that appropriately completes the request.
|
19 |
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
|
20 |
Your goal is to teach maths a beginner so make it friendly and accessible. Break down your chain of thoughts as for him/her to understand.
|
|
|
26 |
### Question:
|
27 |
{question}
|
28 |
|
29 |
+
### Response:
|
30 |
+
<think>"""
|
31 |
+
|
32 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
33 |
+
outputs = self.model.generate(
|
34 |
+
**inputs,
|
35 |
+
max_new_tokens=1200,
|
36 |
+
temperature=0.7,
|
37 |
+
do_sample=True
|
38 |
+
)
|
39 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
|
41 |
def main():
|
42 |
+
st.title("🧮 Friendly Math Tutor")
|
43 |
+
st.write("Ask me any math question! I'll help you understand step by step.")
|
44 |
+
|
45 |
+
tutor = MathTutor()
|
46 |
+
|
47 |
+
question = st.text_area("Your math question:", height=100)
|
48 |
+
|
49 |
+
if st.button("Get Help"):
|
50 |
+
if question:
|
51 |
+
with st.spinner("Thinking..."):
|
52 |
+
response = tutor.get_response(question)
|
53 |
+
explanation = response.split("### Response:")[1]
|
54 |
+
st.markdown(explanation)
|
55 |
+
else:
|
56 |
+
st.warning("Please enter a question!")
|
57 |
+
|
58 |
+
st.divider()
|
59 |
+
st.markdown("""
|
60 |
+
Example questions:
|
61 |
+
- How do I solve quadratic equations?
|
62 |
+
- Explain the concept of derivatives
|
63 |
+
- Help me understand trigonometry ratios
|
64 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
main()
|