File size: 7,739 Bytes
aa68450
ea3bd45
eb58c95
aa68450
 
4547220
 
 
ac1ff33
ea3bd45
eb58c95
ac1ff33
aa68450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3bd45
 
 
 
 
 
 
 
aa68450
 
ea3bd45
 
aa68450
 
 
 
 
ea3bd45
 
 
 
 
 
 
 
 
 
 
aa68450
ea3bd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa68450
 
 
f80e04a
 
 
e8fb6a3
aa68450
f80e04a
 
 
4547220
aa68450
 
 
 
e8fb6a3
aa68450
e8fb6a3
aa68450
e8fb6a3
 
aa68450
 
 
 
 
ea3bd45
 
 
aa68450
 
 
 
 
 
ea3bd45
 
 
e8fb6a3
ea3bd45
 
 
 
 
 
aa68450
ea3bd45
 
e8fb6a3
 
4547220
 
 
 
 
 
 
 
32e3d31
4547220
 
 
 
 
120dad2
e8fb6a3
ea3bd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4547220
8a6a919
4547220
 
 
 
 
e8fb6a3
4547220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3bd45
4547220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from collections import Counter
import pandas as pd
import streamlit as st
import json
from plotly import express as px
from safetensors import safe_open
from semantic_search import predict
from sentence_transformers import SentenceTransformer
import os
import plotly.graph_objects as go

HF_TOKEN = os.environ.get("HF_TOKEN")


def get_tree_map_data(
    data: dict,
    countings_parents: dict,
    countings_labels: dict,
    root: str = " ",
) -> tuple:
    names: list = [""]
    parents: list = [root]
    values: list = ["0"]

    for group, labels in data.items():
        parents.append(root)
        if group in countings_parents:
            values.append(str(countings_parents[group]))
            group_name_with_count = (
                group
                + "<br>"
                + "Anzahl Datensätze:"
                + " "
                + str(countings_parents[group])
            )
            names.append(group_name_with_count)
        else:
            values.append("0")
            group_name_with_count = group + "<br>" + "Anzahl Datensätze:" + " " + "0"
            names.append(group_name_with_count)
        for label in labels:
            if "-" in label:
                label = label.split("-")
                label = label[0] + "<br> -" + label[1]
            if label in countings_labels:
                label_name_with_count = (
                    label
                    + "<br>"
                    + "<br>"
                    + "Anzahl Datensätze:"
                    + "<br>"
                    + ""
                    + str(countings_labels[label])
                )
                names.append(label_name_with_count)
                parents.append(group_name_with_count)
                values.append(str(countings_labels[label]))
            if label not in countings_labels:
                if "<br>" in label:
                    if (
                        label.split("<br>")[0].strip() + label.split("<br>")[-1]
                        in countings_labels
                    ):
                        label_name_with_count = (
                            label
                            + "<br>"
                            + "<br>"
                            + "Anzahl Datensätze:"
                            + "<br>"
                            + ""
                            + str(
                                countings_labels[
                                    label.split("<br>")[0].strip()
                                    + label.split("<br>")[-1]
                                ]
                            )
                        )
                else:
                    print(label)
                    label_name_with_count = (
                        label
                        + "<br>"
                        + "<br>"
                        + "Anzahl Datensätze:"
                        + "<br>"
                        + ""
                        + "0"
                    )
                    names.append(label_name_with_count)
                    parents.append(group_name_with_count)
                    values.append("0")
    return parents, names, values


def load_json(path: str) -> dict:
    with open(path, "r") as fp:
        return json.load(fp)


# Load Data
data = load_json("data.json")
taxonomy = load_json("taxonomy_processed_v3.json")
taxonomy_labels = [el["group"] + " - " + el["label"] for el in taxonomy]

theme_counts = dict(Counter([el["THEMA"] for el in data]))
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))

names = [""]
parents = ["Musterdatenkatalog"]

taxonomy_group_label_mapper: dict = {el["group"]: [] for el in taxonomy}

for el in taxonomy:
    if el["group"] != "Sonstiges":
        taxonomy_group_label_mapper[el["group"]].append(el["label"])
    else:
        taxonomy_group_label_mapper[el["group"]].append("Sonstiges ")

del taxonomy_group_label_mapper["Sonstiges"]

parents, names, values = get_tree_map_data(
    data=taxonomy_group_label_mapper,
    countings_parents=theme_counts,
    countings_labels=labels_counts,
    root="Musterdatenkatalog",
)

df = pd.DataFrame(data={"thema": parents, "bezeichnung": names, "value": values})
df["value"] = df["value"].astype(str)
df["bezeichnung"] = df["bezeichnung"]

fig = go.Figure(
    go.Treemap(
        labels=df["bezeichnung"],
        parents=df["thema"],
        textinfo="label",
    )
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_layout(height=1000, width=1000, template="plotly")


tensors = {}
with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
    for k in f.keys():
        tensors[k] = f.get_tensor(k)

model = SentenceTransformer(
    model_name_or_path="and-effect/musterdatenkatalog_clf",
    device="cpu",
    use_auth_token=HF_TOKEN,
)


st.set_page_config(layout="wide")

st.title("Musterdatenkatalog")

st.markdown(
    """
<style>
.font {
    font-size:20px !important;
}
</style>
""",
    unsafe_allow_html=True,
)

st.markdown(
    '<p class="font">This demo showcases the algorithm of Musterdatenkatalog (MDK) of the Bertelsmann Stiftung. The MDK is a taxonomy of Open Data in municipalities in Germany. It is intended to help municipalities in Germany, as well as data analysts and journalists, to get an overview of the topics and the extent to which cities have already published data sets.</p>',
    unsafe_allow_html=True,
)


st.markdown(
    '<p class="font"> For more details checkout the <a href=https://www.bertelsmann-stiftung.de/de/unsere-projekte/smart-country/musterdatenkatalog> Musterdatenkatalog.</p>',
    unsafe_allow_html=True,
)


col1, col2, col3 = st.columns(3)
col1.metric("Datensätze", len(data))
col2.metric("Themen", len(theme_counts))
col3.metric("Bezeichnungen", len(labels_counts))

st.title("Taxonomy")

st.plotly_chart(fig)

st.title("Predict a Dataset")

st.markdown(
    """
<style>
/* Style columns */
[data-testid="column"] {
      border-radius: 15px;
         background-color: white;
         box-shadow: 0 0 10px #eee;
         border: 1px solid #ddd;
         padding: 1rem;;
} 

/* Style containers */
[data-testid="stVerticalBlock"] > [style*="flex-direction: column;"] > [data-testid="stVerticalBlock"] {
      border-radius: 15px;
         background-color: white;
         box-shadow: 0 0 10px #eee;
         border: 1px solid #ddd;
         padding: 1rem;;
}
</style>
""",
    unsafe_allow_html=True,
)


col1, col2 = st.columns([1.2, 1])


with col2:
    st.subheader("Example Input Dataset Names")
    examples = [
        "Spielplätze",
        "Berliner Weihnachtsmärkte 2022",
        "Hochschulwechslerquoten zum Masterstudium nach Bundesländern",
        "Umringe der Bebauungspläne von Etgert",
    ]

    for example in examples:
        if st.button(example):
            if "key" not in st.session_state:
                st.session_state["query"] = example


with col1:
    if "query" not in st.session_state:
        query = st.text_input(
            "Enter dataset name",
        )
    if "query" in st.session_state and st.session_state.query in examples:
        query = st.text_input("Enter dataset name", value=st.session_state.query)
    if "query" in st.session_state and st.session_state.query not in examples:
        del st.session_state["query"]
        query = st.text_input("Enter dataset name")

    top_k = st.select_slider("Top Results", options=[1, 2, 3, 4, 5], value=1)

    predictions = predict(
        query=query,
        corpus_embeddings=tensors["corpus_embeddings"],
        corpus_labels=taxonomy_labels,
        top_k=top_k,
        model=model,
    )

    if st.button("Predict"):
        for prediction in predictions:
            st.write(prediction)