Rahka's picture
Update app.py
32e3d31
raw
history blame
5.52 kB
from collections import Counter
import streamlit as st
import json
from itertools import islice
from typing import Generator
from plotly import express as px
from safetensors import safe_open
from semantic_search import predict
from sentence_transformers import SentenceTransformer
import os
HF_TOKEN = os.environ.get("HF_TOKEN")
def chunks(data: dict, size=13) -> Generator:
it = iter(data)
for i in range(0, len(data), size):
yield {k: data[k] for k in islice(it, size)}
def get_tree_map_data(
data: dict,
countings_parents: dict,
countings_labels: dict,
root: str = " ",
) -> tuple:
names: list = [""]
parents: list = [root]
values: list = ["0"]
for group, labels in data.items():
names.append(group)
parents.append(root)
if group in countings_parents:
values.append(str(countings_parents[group]))
else:
values.append("0")
for label in labels:
if "-" in label:
label = label.split("-")
label = label[0] + "<br> -" + label[1]
names.append(label)
parents.append(group)
if label in countings_labels:
values.append(str(countings_labels[label]))
else:
values.append("0")
# if "-" in label:
# names.append(label.split("-")[0])
# parents.append(label)
# names.append(label.split("-")[1])
# parents.append(label)
return parents, names, values
def load_json(path: str) -> dict:
with open(path, "r") as fp:
return json.load(fp)
# Load Data
data = load_json("data.json")
taxonomy = load_json("taxonomy_processed_v3.json")
taxonomy_labels = [el["group"] + " - " + el["label"] for el in taxonomy]
theme_counts = dict(Counter([el["THEMA"] for el in data]))
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))
names = [""]
parents = ["Musterdatenkatalog"]
taxonomy_group_label_mapper: dict = {el["group"]: [] for el in taxonomy}
for el in taxonomy:
if el["group"] != "Sonstiges":
taxonomy_group_label_mapper[el["group"]].append(el["label"])
else:
taxonomy_group_label_mapper[el["group"]].append("Sonstiges ")
parents, name, values = get_tree_map_data(
data=taxonomy_group_label_mapper,
countings_parents=theme_counts,
countings_labels=labels_counts,
root="Musterdatenkatalog",
)
fig = px.treemap(
names=name,
parents=parents,
)
fig.update_layout(
margin=dict(t=50, l=25, r=25, b=25),
height=1000,
width=1000,
template="plotly",
)
tensors = {}
with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
for k in f.keys():
tensors[k] = f.get_tensor(k)
model = SentenceTransformer(
model_name_or_path="and-effect/musterdatenkatalog_clf",
device="cpu",
use_auth_token=HF_TOKEN,
)
st.set_page_config(layout="wide")
st.title("Musterdatenkatalog")
col1, col2, col3 = st.columns(3)
col1.metric("Kommunale Datensätze", len(data))
col2.metric("Themen", len(theme_counts))
col3.metric("Bezeichnungen", len(labels_counts))
st.title("Taxonomy")
st.plotly_chart(fig)
st.title("Predict a Dataset")
# create two columns and make left column wider
# st.markdown(
# """
# <style>
# div[data-testid="stVerticalBlock"] div[style*="flex-direction: column;"] div[data-testid="stVerticalBlock"] {
# border-radius: 15px;
# background-color: white;
# box-shadow: 0 0 10px #eee;
# border: 1px solid #ddd;
# padding: 1rem;;
# }
# </style>
# """,
# unsafe_allow_html=True,
# )
st.markdown(
"""
<style>
/* Style columns */
[data-testid="column"] {
border-radius: 15px;
background-color: white;
box-shadow: 0 0 10px #eee;
border: 1px solid #ddd;
padding: 1rem;;
}
/* Style containers */
[data-testid="stVerticalBlock"] > [style*="flex-direction: column;"] > [data-testid="stVerticalBlock"] {
border-radius: 15px;
background-color: white;
box-shadow: 0 0 10px #eee;
border: 1px solid #ddd;
padding: 1rem;;
}
</style>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns([1.2, 1])
with col2:
st.subheader("Example Datasets")
examples = [
"Spielplätze",
"Berliner Weihnachtsmärkte 2022",
"Hochschulwechslerquoten zum Masterstudium nach Bundesländern",
"Umringe der Bebauungspläne von Etgert",
]
for example in examples:
if st.button(example):
if "key" not in st.session_state:
st.session_state["query"] = example
with col1:
if "query" not in st.session_state:
query = st.text_input(
"Enter dataset name",
)
if "query" in st.session_state and st.session_state.query in examples:
query = st.text_input("Enter dataset name", value=st.session_state.query)
if "query" in st.session_state and st.session_state.query not in examples:
del st.session_state["query"]
query = st.text_input("Enter dataset name")
top_k = st.select_slider("Top Results", options=[1, 2, 3, 4, 5], value=1)
predictions = predict(
query=query,
corpus_embeddings=tensors["corpus_embeddings"],
corpus_labels=taxonomy_labels,
top_k=top_k,
model=model,
)
if st.button("Predict"):
for prediction in predictions:
st.write(prediction)