Spaces:
Sleeping
Sleeping
File size: 5,499 Bytes
6e1d456 a9af338 57e6ae9 6e1d456 67d138e 83accb3 a9c25b6 479f1ea 6e1d456 3c008ee 3c026a8 f647915 6e1d456 31a2206 7d98f33 3c008ee 6e1d456 7fda13d 6e1d456 edc9571 96203aa 6e1d456 96203aa 6e1d456 96203aa 6e1d456 96203aa 6e1d456 96203aa 6e1d456 96203aa 6e1d456 96203aa 107903d 6e1d456 a9c25b6 6e1d456 a9c25b6 6e1d456 a9c25b6 6e1d456 107903d 6e1d456 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
checkpoint = "andre-coy/speecht5_tts_tandt"
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = {
"BDL": "spkemb/triniFemale.npy",
"CLB": "spkemb/triniFemale19.npy",
"KSP": "spkemb/triniFemale_train5000.npy",
"RMS": "spkemb/triniMale_train1.npy",
"SLT": "spkemb/triniMale_train120.npy",
}
def predict(text, speaker):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
#input_ids = input_ids[..., :model.config.max_text_positions]
if speaker == "Surprise Me!":
# load one of the provided speaker embeddings at random
idx = np.random.randint(len(speaker_embeddings))
key = list(speaker_embeddings.keys())[idx]
speaker_embedding = np.load(speaker_embeddings[key])
# randomly shuffle the elements
np.random.shuffle(speaker_embedding)
# randomly flip half the values
x = (np.random.rand(512) >= 0.5) * 1.0
x[x == 0] = -1.0
speaker_embedding *= x
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
else:
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
#speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
speaker_embedding = torch.tensor(speaker_embedding) #the saved model is already unsqueezed, but is not a tensor, so make it one
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
#speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "SpeechT5: Speech Synthesis"
description = """
#The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
#By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
#SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> (TTS) checkpoint for the English language.
#See also the <a href="https://huggingface.co/spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a>
#and the <a href="https://huggingface.co/spaces/Matthijs/speecht5-vc-demo">voice conversion demo</a>.
#Refer to <a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">this Colab notebook</a> to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language.
<b>How to use:</b> Enter some English text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results.
The <em>Surprise Me!</em> option creates a completely randomized speaker.
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
author = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
eprint={2110.07205},
archivePrefix={arXiv},
primaryClass={eess.AS},
year={2021}
}
#</pre>
#<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""
#examples = [
#["It is not in the stars to hold our destiny but in ourselves.", "BDL (male)"],
#["The octopus and Oliver went to the opera in October.", "CLB (female)"],
#["She sells seashells by the seashore. I saw a kitten eating chicken in the kitchen.", "RMS (male)"],
#["Brisk brave brigadiers brandished broad bright blades, blunderbusses, and bludgeons—balancing them badly.", "SLT (female)"],
#["A synonym for cinnamon is a cinnamon synonym.", "BDL (male)"],
#["How much wood would a woodchuck chuck if a woodchuck could chuck wood? He would chuck, he would, as much as he could, and chuck as much wood as a woodchuck would if a woodchuck could chuck wood.", "CLB (female)"],
#]
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"BDL (female)",
"CLB (female)",
"KSP (female)",
"RMS (male)",
"SLT (male)",
"Surprise Me!"
],
value="BDL (male)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
description=description,
article=article,
# examples=examples,
).launch()
|