Spaces:
Sleeping
Sleeping
andreeabodea
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pdfplumber
|
3 |
+
import re
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
6 |
+
|
7 |
+
"""
|
8 |
+
Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'.
|
9 |
+
Parameters:
|
10 |
+
- path (str): The file path to the PDF file.
|
11 |
+
- wanted_section (str): The section to start extracting text from.
|
12 |
+
- next_section (str): The section to stop extracting text at.
|
13 |
+
Returns:
|
14 |
+
- text (str): The extracted text from the specified section range.
|
15 |
+
"""
|
16 |
+
|
17 |
+
|
18 |
+
def get_section(path, wanted_section, next_section):
|
19 |
+
print(wanted_section)
|
20 |
+
|
21 |
+
# Open the PDF file
|
22 |
+
doc = pdfplumber.open(BytesIO(path))
|
23 |
+
start_page = []
|
24 |
+
end_page = []
|
25 |
+
|
26 |
+
# Find the all the pages for the specified sections
|
27 |
+
for page in range(len(doc.pages)):
|
28 |
+
if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0:
|
29 |
+
start_page.append(page)
|
30 |
+
if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0:
|
31 |
+
end_page.append(page)
|
32 |
+
|
33 |
+
# Extract the text between the start and end page of the wanted section
|
34 |
+
text = []
|
35 |
+
for page_num in range(max(start_page), max(end_page)+1):
|
36 |
+
page = doc.pages[page_num]
|
37 |
+
text.append(page.extract_text())
|
38 |
+
text = " ".join(text)
|
39 |
+
final_text = text.replace("\n", " ")
|
40 |
+
return final_text
|
41 |
+
|
42 |
+
|
43 |
+
def extract_between(big_string, start_string, end_string):
|
44 |
+
# Use a non-greedy match for content between start_string and end_string
|
45 |
+
pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string)
|
46 |
+
match = re.search(pattern, big_string, re.DOTALL)
|
47 |
+
|
48 |
+
if match:
|
49 |
+
# Return the content without the start and end strings
|
50 |
+
return match.group(1)
|
51 |
+
else:
|
52 |
+
# Return None if the pattern is not found
|
53 |
+
return None
|
54 |
+
|
55 |
+
def format_section1(section1_text):
|
56 |
+
result_section1_dict = {}
|
57 |
+
|
58 |
+
result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm")
|
59 |
+
result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm")
|
60 |
+
result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE")
|
61 |
+
result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel")
|
62 |
+
result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum")
|
63 |
+
result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan")
|
64 |
+
result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung")
|
65 |
+
result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche")
|
66 |
+
|
67 |
+
return result_section1_dict
|
68 |
+
|
69 |
+
def answer_questions(text,language="de"):
|
70 |
+
# Initialize the zero-shot classification pipeline
|
71 |
+
model_name = "deepset/gelectra-large-germanquad"
|
72 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
74 |
+
|
75 |
+
# Initialize the QA pipeline
|
76 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
77 |
+
questions = [
|
78 |
+
"Welches ist das Titel des Moduls?",
|
79 |
+
"Welches ist das Sektor oder das Kernthema?",
|
80 |
+
"Welches ist das Land?",
|
81 |
+
"Zu welchem Program oder EZ-Programm gehort das Projekt?"
|
82 |
+
#"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?"
|
83 |
+
# "In dem Dokument was steht bei Sektor?",
|
84 |
+
# "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?",
|
85 |
+
# "In dem Dokument was steht bei EZ-Programmziel?",
|
86 |
+
# "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?",
|
87 |
+
# "In dem Dokument was steht bei Zielerreichung des Moduls?",
|
88 |
+
# "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?",
|
89 |
+
# "In dem Dokument was steht bei Vorschläge zur Modulanpassung?",
|
90 |
+
# "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?",
|
91 |
+
# "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?"
|
92 |
+
]
|
93 |
+
|
94 |
+
# Iterate over each question and get answers
|
95 |
+
for question in questions:
|
96 |
+
result = qa_pipeline(question=question, context=text)
|
97 |
+
# print(f"Question: {question}")
|
98 |
+
# print(f"Answer: {result['answer']}\n")
|
99 |
+
answers_dict[question] = result['answer']
|
100 |
+
return answers_dict
|
101 |
+
|
102 |
+
|
103 |
+
def process_pdf(path):
|
104 |
+
results_dict = {}
|
105 |
+
results_dict["1. Kurzbeschreibung"] = \
|
106 |
+
get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls")
|
107 |
+
answers = answer_questions(results_dict["1. Kurzbeschreibung"])
|
108 |
+
return result_section1_dict['TOPIC']
|
109 |
+
|
110 |
+
def get_first_page_text(file_data):
|
111 |
+
doc = pdfplumber.open(BytesIO(file_data))
|
112 |
+
if len(doc.pages):
|
113 |
+
return doc.pages[0].extract_text()
|
114 |
+
|
115 |
+
# Define the Gradio interface
|
116 |
+
# iface = gr.Interface(fn=process_pdf,
|
117 |
+
iface = gr.Interface(fn=get_first_page_text,
|
118 |
+
inputs=gr.File(type="binary", label="Upload PDF"),
|
119 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
120 |
+
title="PDF Text Extractor",
|
121 |
+
description="Upload a PDF file to extract.")
|
122 |
+
|
123 |
+
iface.launch()
|