Spaces:
Runtime error
Runtime error
File size: 5,163 Bytes
0b16387 a2f836f 0b16387 e7d71ae a2f836f 220da13 9bcbb8b 220da13 a2f836f 220da13 9bcbb8b 220da13 a2f836f 220da13 a2f836f 220da13 9bcbb8b 220da13 a2f836f 220da13 a2f836f 220da13 0b16387 a2f836f 9bcbb8b a2f836f 220da13 a2f836f 2806b32 a2f836f 87af43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import os
import pdfplumber
import re
import gradio as gr
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
"""
Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'.
Parameters:
- path (str): The file path to the PDF file.
- wanted_section (str): The section to start extracting text from.
- next_section (str): The section to stop extracting text at.
Returns:
- text (str): The extracted text from the specified section range.
"""
def get_section(path, wanted_section, next_section):
print(wanted_section)
# Open the PDF file
doc = pdfplumber.open(BytesIO(path))
start_page = []
end_page = []
# Find the all the pages for the specified sections
for page in range(len(doc.pages)):
if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0:
start_page.append(page)
if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0:
end_page.append(page)
# Extract the text between the start and end page of the wanted section
text = []
for page_num in range(max(start_page), max(end_page)+1):
page = doc.pages[page_num]
text.append(page.extract_text())
text = " ".join(text)
final_text = text.replace("\n", " ")
return final_text
def extract_between(big_string, start_string, end_string):
# Use a non-greedy match for content between start_string and end_string
pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string)
match = re.search(pattern, big_string, re.DOTALL)
if match:
# Return the content without the start and end strings
return match.group(1)
else:
# Return None if the pattern is not found
return None
def format_section1(section1_text):
result_section1_dict = {}
result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm")
result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm")
result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE")
result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel")
result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum")
result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan")
result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung")
result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche")
return result_section1_dict
def answer_questions(text,language="de"):
# Initialize the zero-shot classification pipeline
model_name = "deepset/gelectra-large-germanquad"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize the QA pipeline
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
questions = [
"Welches ist das Titel des Moduls?",
"Welches ist das Sektor oder das Kernthema?",
"Welches ist das Land?",
"Zu welchem Program oder EZ-Programm gehort das Projekt?"
#"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?"
# "In dem Dokument was steht bei Sektor?",
# "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?",
# "In dem Dokument was steht bei EZ-Programmziel?",
# "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?",
# "In dem Dokument was steht bei Zielerreichung des Moduls?",
# "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?",
# "In dem Dokument was steht bei Vorschläge zur Modulanpassung?",
# "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?",
# "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?"
]
# Iterate over each question and get answers
for question in questions:
result = qa_pipeline(question=question, context=text)
# print(f"Question: {question}")
# print(f"Answer: {result['answer']}\n")
answers_dict[question] = result['answer']
return answers_dict
def process_pdf(path):
results_dict = {}
results_dict["1. Kurzbeschreibung"] = \
get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls")
answers = answer_questions(results_dict["1. Kurzbeschreibung"])
return result_section1_dict['TOPIC']
def get_first_page_text(file_data):
doc = pdfplumber.open(BytesIO(file_data))
if len(doc.pages):
return doc.pages[0].extract_text()
if __name__ == "__main__":
# Define the Gradio interface
# iface = gr.Interface(fn=process_pdf,
|