|
|
|
from urllib.parse import urlparse |
|
|
|
import gradio as gr |
|
import torch |
|
from accelerate.commands.estimate import check_has_model, create_empty_model |
|
from accelerate.utils import calculate_maximum_sizes, convert_bytes |
|
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError |
|
from parallelism_utils import estimate_zero1_model_states_mem_needs, estimate_zero2_model_states_mem_needs, estimate_zero3_model_states_mem_needs |
|
|
|
|
|
DTYPE_MODIFIER = {"float32": 1, "float16/bfloat16": 2, "int8": 4, "int4": 8} |
|
PRECISION = {"Mixed precision": "mixed", "Single precision": "single"} |
|
DTYPE = {"float32": "float32", "float16/bfloat16": "float16"} |
|
|
|
|
|
def extract_from_url(name: str): |
|
"Checks if `name` is a URL, and if so converts it to a model name" |
|
is_url = False |
|
try: |
|
result = urlparse(name) |
|
is_url = all([result.scheme, result.netloc]) |
|
except Exception: |
|
is_url = False |
|
|
|
if not is_url: |
|
return name |
|
else: |
|
path = result.path |
|
return path[1:] |
|
|
|
|
|
def translate_llama2(text): |
|
"Translates llama-2 to its hf counterpart" |
|
if not text.endswith("-hf"): |
|
return text + "-hf" |
|
return text |
|
|
|
|
|
def get_model(model_name: str, library: str, access_token: str): |
|
"Finds and grabs model from the Hub, and initializes on `meta`" |
|
if "meta-llama" in model_name: |
|
model_name = translate_llama2(model_name) |
|
if library == "auto": |
|
library = None |
|
model_name = extract_from_url(model_name) |
|
try: |
|
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token) |
|
except GatedRepoError: |
|
raise gr.Error( |
|
f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. " |
|
) |
|
except RepositoryNotFoundError: |
|
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.") |
|
except ValueError: |
|
raise gr.Error( |
|
f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)" |
|
) |
|
except (RuntimeError, OSError) as e: |
|
library = check_has_model(e) |
|
if library != "unknown": |
|
raise gr.Error( |
|
f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo." |
|
) |
|
raise gr.Error( |
|
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" |
|
) |
|
except ImportError: |
|
|
|
model = create_empty_model( |
|
model_name, library_name=library, trust_remote_code=False, access_token=access_token |
|
) |
|
except Exception as e: |
|
raise gr.Error( |
|
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" |
|
) |
|
return model |
|
|
|
|
|
def calculate_memory(model: torch.nn.Module, options: dict): |
|
"Calculates the memory usage for a model init on `meta` device" |
|
total_size, largest_layer = calculate_maximum_sizes(model) |
|
total_params = model.num_parameters() |
|
|
|
data = [] |
|
for dtype in options["precision"]: |
|
dtype_total_size = total_size |
|
dtype_largest_layer = largest_layer[0] |
|
|
|
modifier = DTYPE_MODIFIER[dtype] |
|
dtype_total_size /= modifier |
|
dtype_largest_layer /= modifier |
|
|
|
dtype_largest_layer = convert_bytes(dtype_largest_layer) |
|
|
|
precision = PRECISION[options["training_regime"]] |
|
model_dtype = DTYPE[dtype] |
|
|
|
if options["zero_stage"] == 0: |
|
cpu_mem = dtype_total_size * 4 |
|
gpu_mem = cpu_mem |
|
elif options["zero_stage"] == 1: |
|
cpu_mem, gpu_mem = estimate_zero1_model_states_mem_needs(total_params, options["num_gpus_per_node"], options["num_nodes"], options["cpu_offload"], options["additional_buffer_factor"], precision, model_dtype) |
|
elif options["zero_stage"] == 2: |
|
cpu_mem, gpu_mem = estimate_zero2_model_states_mem_needs(total_params, options["num_gpus_per_node"], options["num_nodes"], options["cpu_offload"], options["additional_buffer_factor"], precision, model_dtype) |
|
elif options["zero_stage"] == 3: |
|
cpu_mem, gpu_mem, largest_layer_memory = estimate_zero3_model_states_mem_needs(total_params, largest_layer[0], options["num_gpus_per_node"], options["num_nodes"], options["cpu_offload"], options["cpu_offload_params"], options["zero_init"], options["additional_buffer_factor"], precision, model_dtype) |
|
data.append( |
|
{ |
|
"Model dtype": dtype, |
|
"Largest Layer or Residual Group": dtype_largest_layer, |
|
"Model Size": convert_bytes(dtype_total_size), |
|
"per CPU": convert_bytes(cpu_mem), |
|
"per GPU": convert_bytes(gpu_mem), |
|
} |
|
) |
|
|
|
return data |
|
|