Spaces:
Runtime error
Runtime error
File size: 29,349 Bytes
97c1a8e cbbf201 97c1a8e 2bb5de3 cbbf201 2bb5de3 97c1a8e 2bb5de3 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e cbbf201 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e ae88819 97c1a8e ae88819 bc41f37 ae88819 bc41f37 ae88819 97c1a8e ae88819 bc41f37 97c1a8e ae88819 97c1a8e ae88819 97c1a8e ae88819 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 97c1a8e bc41f37 ae88819 bc41f37 ae88819 bc41f37 ae88819 bc41f37 ae88819 bc41f37 ae88819 97c1a8e bc41f37 97c1a8e bc41f37 ae88819 bc41f37 ae88819 97c1a8e bc41f37 97c1a8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"import pandas as pd\n",
"import gradio as gr\n",
"from pydantic import BaseModel, Field\n",
"\n",
"import langchain\n",
"from langchain.output_parsers import PydanticOutputParser\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.tools import PythonAstREPLTool\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from dotenv import load_dotenv\n",
"load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"langchain.debug = False\n",
"pd.set_option('display.max_columns', 20)\n",
"pd.set_option('display.max_rows', 20)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"data_dir_path = os.path.join(os.getcwd(), 'data')\n",
"NUM_ROWS_TO_RETURN = 5\n",
"\n",
"table_1_df = pd.read_csv(os.path.join(data_dir_path, 'legal_entries_a.csv'))\n",
"table_2_df = pd.read_csv(os.path.join(data_dir_path, 'legal_entries_b.csv'))\n",
"template_df = pd.read_csv(os.path.join(data_dir_path, 'legal_template.csv'))"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"transform_model = ChatOpenAI(\n",
" model_name='gpt-4',\n",
" temperature=0,\n",
")\n",
"\n",
"natural_language_model = ChatOpenAI(\n",
" model_name='gpt-4',\n",
" temperature=0.1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"# TODO: add validation to models, coupled with retry mechanism in chain\n",
"class TableMappingEntry(BaseModel):\n",
" '''A single row in a table mapping. Describes how a single column in a source table maps to a single column in a target table, including any necessary transformations, and their explanations.'''\n",
" source_column_name: str = Field(..., description=\"Name of the column in the source table.\")\n",
" target_column_name: str = Field(..., description=\"Name of the column in the target table, to which the source column maps.\")\n",
" value_transformations: str = Field(..., description=\"Transformations needed make the source values match the target values. If unncecessary, write 'NO_TRANSFORM'.\")\n",
" explanation: str = Field(..., description=\"One-sentence explanation of this row (source-target mapping/transformation). Include any information that might be relevant to a software engineer building an ETL pipeline with this document.\")\n",
"\n",
"class TableMapping(BaseModel):\n",
" '''A list of table mappings collectively describe how a source table should be transformed to match the schema of a target table.'''\n",
" table_mappings: list[TableMappingEntry] = Field(..., description=\"A list of table mappings.\")\n",
" \n",
"analyst_prompt_str = '''\n",
"You are a Data Scientist, who specializes in generating schema mappings for use by Software Engineers in ETL pipelines.\n",
"\n",
"Head of `source_csv`:\n",
"\n",
"{source_1_csv_str}\n",
"\n",
"Head of `target_csv`:\n",
"\n",
"{target_csv_str}\n",
"\n",
"Your job is to generate a thorough, precise summary of how `source_csv` should be transformed to adhere exactly to the `target_csv` schema.\n",
"\n",
"For each column in the `source_csv`, you must communicate which column in the `target_csv` it maps to, and how the values in the `source_csv` column should be transformed to match those in the `target_csv`.\n",
"You can assume the rows are aligned: that is, the first row in `source_csv` corresponds to the first row in `target_csv`, and so on.\n",
"\n",
"Remember:\n",
"1. Which column in `target_csv` it maps to. You should consider the semantic meaning of the columns, not just the character similarity. \n",
"\n",
"Example mappings:\n",
"- 'MunICipality' in `source_csv` should map to 'City' in `target_csv`.\n",
"- 'fullname' in `source_csv` should map to both 'FirstName' and 'LastName' in `target_csv`. You must explain this transformation, as well, including the target sequencing of first and last name.\n",
"\n",
"Example transformations:\n",
"- If date in `source_csv` is `2020-01-01` and date in `target_csv` is `01/01/2020`, explain exactly how this should be transformed and the reasoning behind it.\n",
"- If city in `source_csv` is `New York` and city in `target_csv` is `NEW YORK` or `NYC`, explain exactly how this should be transformed and the reasoning behind it.\n",
"\n",
"Lastly, point out any other oddities, such as duplicate columns, erroneous columns, etc.\n",
"\n",
"{format_instructions}\n",
"\n",
"Remember:\n",
"- Be concise: you are speaking to engineers, not customers.\n",
"- Be precise: all of these values are case sensitive. Consider casing for city names, exact prefixes for identifiers, ordering of people's names, etc.\n",
"- DO NOT include commas, quotes, or any other characters that might interfere with JSON serialization or CSV generation\n",
"\n",
"Your response:\n",
"'''\n",
"\n",
"def get_data_str_from_df_for_prompt(df, use_head=True, num_rows_to_return=NUM_ROWS_TO_RETURN):\n",
" data = df.head(num_rows_to_return) if use_head else df.tail(num_rows_to_return)\n",
" return f'<df>\\n{data.to_markdown()}\\n</df>'\n",
"\n",
"table_mapping_parser = PydanticOutputParser(pydantic_object=TableMapping)\n",
"analyst_prompt = ChatPromptTemplate.from_template(\n",
" template=analyst_prompt_str, \n",
" partial_variables={'format_instructions': table_mapping_parser.get_format_instructions()},\n",
")\n",
"\n",
"mapping_chain = analyst_prompt | transform_model | table_mapping_parser\n",
"table_mapping: TableMapping = mapping_chain.invoke({\"source_1_csv_str\": get_data_str_from_df_for_prompt(table_1_df), \"target_csv_str\": get_data_str_from_df_for_prompt(template_df)})"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"SPEC_WRITER_PROMPT_STR = '''\n",
"You are an expert product manager and technical writer for a software company, who generates clean, concise, precise specification documents for your employees.\n",
"Your job is to write a plaintext spec for a python script for a software engineer to develop a component within an ETL pipeline.\n",
"\n",
"This document must include 100% of the information your employee needs to write a successful script to transform source_df to target_df.\n",
"However, DO NOT include the original table_mapping. Your job is to translate everything into natural language.\n",
"\n",
"Here is a stringified Pandas DataFrame that describes the mapping and the transformation steps:\n",
"\n",
"{table_mapping}\n",
"\n",
"You must translate this into clean, concise, and complete instructions for your employee.\n",
"\n",
"This document should be formatted like a technical document in plaintext. Do not include code or data.\n",
"\n",
"This document must include:\n",
"- Overview\n",
"- Input (source_df)\n",
"- Output (target_df)\n",
"- Exact column mapping\n",
"- Exact transformation steps for each column\n",
"- Precise instructions for what this script should do\n",
"- Do not modify the source_df. Create a new dataframe named target_df.\n",
"- This script should never include the source data. It should only include the transormations required to create the target_df.\n",
"- Return the target_df\n",
"\n",
"You will never see this employee. They cannot contact you. You will never see their code. You must include 100% of the information they need to write a successful script.\n",
"Remember:\n",
"- Clean: No extra information, no formatting aside from plaintext\n",
"- Concise: Your employees benefit from brevity\n",
"- Precise: your words must be unambiguous, exact, and full represent a perfect translation of the pandas dataframe.\n",
"\n",
"Your response:\n",
"'''\n",
"spec_writer_prompt = ChatPromptTemplate.from_template(SPEC_WRITER_PROMPT_STR)\n",
"\n",
"spec_writer_chain = spec_writer_prompt | natural_language_model | StrOutputParser()\n",
"spec_str = spec_writer_chain.invoke({\"table_mapping\": str(table_mapping.dict()['table_mappings'])})"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'source_column_name': {0: 'case_date',\n",
" 1: 'lastname, firstname',\n",
" 2: 'case_type',\n",
" 3: 'case_id',\n",
" 4: 'court_fee',\n",
" 5: 'jurisdiction',\n",
" 6: 'judge_last_name'},\n",
" 'target_column_name': {0: 'CaseDate',\n",
" 1: 'FullName',\n",
" 2: 'CaseType',\n",
" 3: 'CaseID',\n",
" 4: 'Fee',\n",
" 5: 'Jurisdiction',\n",
" 6: 'NO_TARGET'},\n",
" 'value_transformations': {0: 'NO_TRANSFORM',\n",
" 1: 'CONCATENATE',\n",
" 2: 'NO_TRANSFORM',\n",
" 3: 'PREFIX',\n",
" 4: 'NO_TRANSFORM',\n",
" 5: 'CAPITALIZE',\n",
" 6: 'DROP'},\n",
" 'explanation': {0: \"The 'case_date' column in the source directly maps to the 'CaseDate' column in the target with no transformation needed.\",\n",
" 1: \"The 'lastname' and 'firstname' columns in the source need to be concatenated with a space in between to match the 'FullName' column in the target.\",\n",
" 2: \"The 'case_type' column in the source directly maps to the 'CaseType' column in the target with no transformation needed.\",\n",
" 3: \"The 'case_id' column in the source needs to be prefixed with 'CASE-' to match the 'CaseID' column in the target.\",\n",
" 4: \"The 'court_fee' column in the source directly maps to the 'Fee' column in the target with no transformation needed.\",\n",
" 5: \"The 'jurisdiction' column in the source needs to be capitalized to match the 'Jurisdiction' column in the target.\",\n",
" 6: \"The 'judge_last_name' column in the source does not have a corresponding column in the target and should be dropped.\"}}"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame(table_mapping.dict()['table_mappings']).to_dict()"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"ENGINEER_PROMPT_STR = '''\n",
"You are a Senior Software Engineer, who specializes in writing Python code for ETL pipelines.\n",
"Your Product Manager has written a spec for a new transormation script. You must follow this document exactly, write python code that implements the spec, validate that code, and then return it.\n",
"Your output should only be python code in Markdown format, eg:\n",
" ```python\n",
" ....\n",
" ```\"\"\"\n",
"Do not return any additional text / explanation. This code will be executed by a robot without human intervention.\n",
"\n",
"Here is the technical specification for your code:\n",
"\n",
"{spec_str}\n",
"\n",
"Remember: return only clean python code in markdown format. The python interpreter running this code will already have `source_df` as a local variable.\n",
"\n",
"Your must return `target_df` at the end.\n",
"'''\n",
"engineer_prompt = ChatPromptTemplate.from_template(ENGINEER_PROMPT_STR)\n",
"\n",
"# engineer_chain = engineer_prompt | transform_model | StrOutputParser() | PythonAstREPLTool(locals={'source_df': table_1_df}).run\n",
"# table_1_df_transformed = engineer_chain.invoke({\"spec_str\": spec_str})\n",
"engineer_chain = engineer_prompt | transform_model | StrOutputParser()\n",
"transform_code = engineer_chain.invoke({\"spec_str\": spec_str})"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"def generate_mapping_code(table_mapping_df) -> str:\n",
" writer_prompt = ChatPromptTemplate.from_template(SPEC_WRITER_PROMPT_STR)\n",
" engineer_prompt = ChatPromptTemplate.from_template(ENGINEER_PROMPT_STR)\n",
" \n",
" writer_chain = writer_prompt | transform_model | StrOutputParser()\n",
" engineer_chain = {\"spec_str\": writer_chain} | engineer_prompt | transform_model | StrOutputParser()\n",
" return engineer_chain.invoke({\"table_mapping\": str(table_mapping_df)})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"generate_mapping_code()"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7938\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7938/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 108,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def show_mapping(file):\n",
" # TODO: add code\n",
" return pd.DataFrame(table_mapping.dict()['table_mappings'])\n",
"demo = gr.Interface(fn=show_mapping, inputs=[\"file\"], outputs='dataframe')\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7939\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7939/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def _sanitize_python_output(text: str):\n",
" _, after = text.split(\"```python\")\n",
" return after.split(\"```\")[0]\n",
"\n",
"def show_code(button):\n",
" # TODO: add code\n",
" return _sanitize_python_output(transform_code)\n",
"check_mapping_text = 'How does that mapping look? \\n\\nFeel free to update it: your changes will be incorporated! \\n\\nWhen you are ready, click the Submit below, and the mapping code will be generated for your approval.'\n",
"demo = gr.Interface(fn=show_code, inputs=[gr.Textbox(value=check_mapping_text, interactive=False)], outputs=[gr.Code(language=\"python\")])\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/lx/3ksh07r96gn2v7b8mb__3mpc0000gn/T/ipykernel_94012/4236222443.py:4: GradioDeprecationWarning: `layout` parameter is deprecated, and it has no effect\n",
" demo = gr.Interface(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7940\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7940/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 110,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def get_transformed_table(button):\n",
" return template_df, PythonAstREPLTool(locals={'source_df': table_1_df}).run(transform_code)\n",
"check_mapping_text = 'How does that code look? \\n\\nWhen you are ready, click the Submit button and the transformed source file will be transformed.'\n",
"demo = gr.Interface(\n",
" fn=get_transformed_table,\n",
" inputs=[gr.Textbox(value=check_mapping_text, interactive=False)],\n",
" outputs=[gr.Dataframe(label='Template Table (target)'), gr.Dataframe(label='Table 1 (transformed)')],\n",
" layout=\"column\",\n",
" examples=[[1]],\n",
")\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/lx/3ksh07r96gn2v7b8mb__3mpc0000gn/T/ipykernel_13584/3295794268.py:55: GradioUnusedKwargWarning: You have unused kwarg parameters in UploadButton, please remove them: {'live': True}\n",
" upload_template_btn = gr.UploadButton(label=\"Upload Template File\", file_types = ['.csv'], live=True, file_count = \"single\")\n",
"/var/folders/lx/3ksh07r96gn2v7b8mb__3mpc0000gn/T/ipykernel_13584/3295794268.py:59: GradioUnusedKwargWarning: You have unused kwarg parameters in UploadButton, please remove them: {'live': True}\n",
" upload_source_button = gr.UploadButton(label=\"Upload Source File\", file_types = ['.csv'], live=True, file_count = \"single\")\n",
"/Users/andybryant/Desktop/projects/zero-mapper/venv/lib/python3.9/site-packages/gradio/utils.py:841: UserWarning: Expected 1 arguments for function <function generate_code at 0x12c23b820>, received 0.\n",
" warnings.warn(\n",
"/Users/andybryant/Desktop/projects/zero-mapper/venv/lib/python3.9/site-packages/gradio/utils.py:845: UserWarning: Expected at least 1 arguments for function <function generate_code at 0x12c23b820>, received 0.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7883\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7883/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def _sanitize_python_output(text: str):\n",
" _, after = text.split(\"```python\")\n",
" return after.split(\"```\")[0]\n",
"\n",
"import io\n",
"def generate_code(val):\n",
" return '# check this out'\n",
"\n",
"def export_csv(d):\n",
" filepath = \"output.csv\"\n",
" d.to_csv(filepath)\n",
" return gr.File.update(value=filepath, visible=True)\n",
"\n",
"def get_table_mapping(source_df, template_df):\n",
" # table_mapping_df = pd.DataFrame(table_mapping.dict()['table_mappings'])\n",
" return pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})\n",
"\n",
"def process_csv_text(temp_file):\n",
" if isinstance(temp_file, str):\n",
" df = pd.read_csv(io.StringIO(temp_file))\n",
" else:\n",
" df = pd.read_csv(temp_file.name)\n",
" return df\n",
"\n",
"def generate_step_markdown(step_number: int, subtitle: str):\n",
" return gr.Markdown(f\"# Step {step_number}\\n\\n ### {subtitle}\")\n",
"\n",
"# TODO: parameterize\n",
"def export_table_mapping(d):\n",
" filename = \"source_template_mapping.csv\"\n",
" d.to_csv(filename)\n",
" return gr.File.update(value=filename, visible=True)\n",
"\n",
"def export_python_code(val):\n",
" filename = \"transformation_code.py\"\n",
" with open(filename, \"w\") as f:\n",
" f.write(val)\n",
" return gr.File.update(value=filename, visible=True)\n",
"\n",
"def export_transformed_source(d):\n",
" filename = \"transformed_source.csv\"\n",
" d.to_csv(filename)\n",
" return gr.File.update(value=filename, visible=True)\n",
"\n",
"with gr.Blocks() as demo:\n",
" # STEP 1\n",
" generate_step_markdown(1, \"Upload a Template CSV (target schema) and a Source CSV.\")\n",
" with gr.Row():\n",
" with gr.Column():\n",
" upload_template_btn = gr.UploadButton(label=\"Upload Template File\", file_types = ['.csv'], live=True, file_count = \"single\")\n",
" template_df = gr.Dataframe(type=\"pandas\")\n",
" upload_template_btn.upload(fn=process_csv_text, inputs=upload_template_btn, outputs=template_df)\n",
" with gr.Column():\n",
" upload_source_button = gr.UploadButton(label=\"Upload Source File\", file_types = ['.csv'], live=True, file_count = \"single\")\n",
" source_df = gr.Dataframe(type=\"pandas\")\n",
" upload_source_button.upload(fn=process_csv_text, inputs=upload_source_button, outputs=source_df)\n",
" \n",
" # STEP 2\n",
" generate_step_markdown(2, \"Generate mapping from Source to Template. Once generated, you can edit the values directly in the table below.\")\n",
" with gr.Row():\n",
" generate_mapping_btn = gr.Button(value=\"Generate Mapping\", variant=\"primary\")\n",
" with gr.Row():\n",
" table_mapping_df = gr.DataFrame(type=\"pandas\")\n",
" generate_mapping_btn.click(fn=get_table_mapping, inputs=[source_df, template_df], outputs=[table_mapping_df])\n",
" \n",
" with gr.Row():\n",
" save_mapping_btn = gr.Button(value=\"Save Mapping\", variant=\"secondary\")\n",
" with gr.Row():\n",
" csv = gr.File(interactive=False, visible=False)\n",
" save_mapping_btn.click(export_table_mapping, table_mapping_df, csv)\n",
" mapping_file = gr.File(label=\"Downloaded File\", visible=False)\n",
" mapping_file.change(lambda x: x, mapping_file, table_mapping_df)\n",
" \n",
" # STEP 3\n",
" generate_step_markdown(3, \"Generate python code to transform Source to Template, using the generated mapping.\")\n",
" with gr.Row():\n",
" generate_code_btn = gr.Button(value=\"Generate Code from Mapping\", variant=\"primary\")\n",
" with gr.Row():\n",
" code_block = gr.Code(language=\"python\")\n",
" generate_code_btn.click(fn=generate_code, outputs=[code_block])\n",
"\n",
" with gr.Row():\n",
" save_code_btn = gr.Button(value=\"Save Code\", variant=\"secondary\")\n",
" with gr.Row():\n",
" text = gr.File(interactive=False, visible=False)\n",
" save_code_btn.click(export_python_code, code_block, text)\n",
" code_file = gr.File(label=\"Downloaded File\", visible=False)\n",
" code_file.change(lambda x: x, code_file, code_block)\n",
"\n",
" # STEP 4\n",
" generate_step_markdown(4, \"Transform the Source CSV into the Template CSV using the generated code.\")\n",
" with gr.Row():\n",
" transform_btn = gr.Button(value=\"Transform Source\", variant=\"primary\")\n",
" with gr.Row():\n",
" source_df_transformed = gr.Dataframe(type=\"pandas\")\n",
" transform_btn.click(lambda x: x, inputs=[source_df], outputs=[source_df_transformed])\n",
"\n",
" with gr.Row():\n",
" save_transformed_source_btn = gr.Button(value=\"Save Transformed Source\", variant=\"secondary\")\n",
" with gr.Row():\n",
" csv = gr.File(interactive=False, visible=False)\n",
" save_transformed_source_btn.click(export_transformed_source, source_df_transformed, csv)\n",
" transform_file = gr.File(label=\"Downloaded File\", visible=False)\n",
" transform_file.change(lambda x: x, transform_file, source_df_transformed)\n",
"\n",
" \n",
" \n",
" # with gr.Row():\n",
" # with gr.Column():\n",
" # gr.Dataframe(label='Target (template)', type='pandas', value=template_df)\n",
" # with gr.Column():\n",
" # gr.Dataframe(label='Source (transformed)', type='pandas', value=PythonAstREPLTool(locals={'source_df': table_1_df}).run(transform_code))\n",
"\n",
" \n",
" \n",
"\n",
"\n",
"\n",
"# def mock_ocr(f):\n",
"# return [[1, 2, 3], [4, 5, 6]]\n",
"\n",
"\n",
"\n",
"# with gr.Blocks() as demo:\n",
"# with gr.Row():\n",
"# file = gr.File(label=\"PDF file\", file_types=[\".pdf\"])\n",
"# dataframe = gr.Dataframe()\n",
" \n",
"# with gr.Column():\n",
"# button = gr.Button(\"Export\")\n",
"# csv = gr.File(interactive=False, visible=False)\n",
" \n",
" \n",
"# file.change(mock_ocr, file, dataframe)\n",
"# button.click(export_csv, dataframe, csv)\n",
" \n",
"# demo.launch()\n",
"\n",
"\n",
"\n",
"\n",
" # with gr.Column():\n",
" # gr.Markdown(\"## Mapping from Source to Template\")\n",
" # with gr.Row():\n",
" # table_mapping_df = pd.DataFrame(table_mapping.dict()['table_mappings'])\n",
" # gr.DataFrame(value=table_mapping_df)\n",
" # save_mapping_btn = gr.Button(value=\"Save Mapping\", variant=\"secondary\")\n",
" # save_mapping_btn.click(fn=lambda : save_csv_file(table_mapping_df, 'table_mapping'))\n",
"\n",
" # with gr.Row():\n",
" # test = gr.Markdown()\n",
" # generate_code_btn = gr.Button(value=\"Generate Code from Mapping\", variant=\"primary\")\n",
" # generate_code_btn.click(fn=generate_code, outputs=test)\n",
"\n",
" # with gr.Column():\n",
" # gr.Markdown(\"## Here is the code that will be used to transform the source file into the template schema:\")\n",
" # gr.Code(language=\"python\", value=_sanitize_python_output(transform_code))\n",
"\n",
" # with gr.Row():\n",
" # gr.Button(value=\"Transform Source\", variant=\"primary\", trigger=\"transform_source\")\n",
" # gr.Button(value=\"Save Code\", variant=\"secondary\", trigger=\"save_code\")\n",
" \n",
" # with gr.Row():\n",
" # with gr.Column():\n",
" # gr.Dataframe(label='Target (template)', type='pandas', value=template_df)\n",
" # with gr.Column():\n",
" # gr.Dataframe(label='Source (transformed)', type='pandas', value=PythonAstREPLTool(locals={'source_df': table_1_df}).run(transform_code))\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 176,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dataframe\n"
]
}
],
"source": [
"source_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|