Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
import pandas as pd | |
import io | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.tools import PythonAstREPLTool | |
from langchain.chat_models import ChatOpenAI | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.chat_models import ChatOpenAI | |
from src.types import TableMapping | |
from src.prompt import ( | |
DATA_SCIENTIST_PROMPT_STR, | |
SPEC_WRITER_PROMPT_STR, | |
ENGINEER_PROMPT_STR, | |
) | |
load_dotenv() | |
if os.environ.get("DEBUG") == "true": | |
os.environ["LANGCHAIN_WANDB_TRACING"] = "true" | |
os.environ["WANDB_PROJECT"] = "llm-data-mapper" | |
NUM_ROWS_TO_RETURN = 5 | |
DATA_DIR_PATH = os.path.join(os.path.dirname(__file__), "data") | |
SYNTHETIC_DATA_DIR_PATH = os.path.join(DATA_DIR_PATH, "synthetic") | |
# TODO: consider different models for different prompts, e.g. natural language prompt might be better with higher temperature | |
BASE_MODEL = ChatOpenAI( | |
model_name="gpt-4", | |
temperature=0, | |
) | |
def _get_data_str_from_df_for_prompt(df, num_rows_to_return=NUM_ROWS_TO_RETURN): | |
return f"<df>\n{df.head(num_rows_to_return).to_markdown()}\n</df>" | |
def get_table_mapping(source_df, template_df): | |
"""Use PydanticOutputParser to parse the output of the Data Scientist prompt into a TableMapping object.""" | |
table_mapping_parser = PydanticOutputParser(pydantic_object=TableMapping) | |
analyst_prompt = ChatPromptTemplate.from_template( | |
template=DATA_SCIENTIST_PROMPT_STR, | |
partial_variables={ | |
"format_instructions": table_mapping_parser.get_format_instructions() | |
}, | |
) | |
mapping_chain = analyst_prompt | BASE_MODEL | table_mapping_parser | |
table_mapping: TableMapping = mapping_chain.invoke( | |
{ | |
"source_1_csv_str": _get_data_str_from_df_for_prompt(source_df), | |
"target_csv_str": _get_data_str_from_df_for_prompt(template_df), | |
} | |
) | |
return pd.DataFrame(table_mapping.dict()["table_mappings"]) | |
def _sanitize_python_output(text: str): | |
"""Remove markdown from python code, as prompt returns it.""" | |
_, after = text.split("```python") | |
return after.split("```")[0] | |
def generate_mapping_code(table_mapping_df) -> str: | |
"""Chain two prompts together to generate python code from a table mapping: 1. technical spec writer, 2. python engineer""" | |
writer_prompt = ChatPromptTemplate.from_template(SPEC_WRITER_PROMPT_STR) | |
engineer_prompt = ChatPromptTemplate.from_template(ENGINEER_PROMPT_STR) | |
writer_chain = writer_prompt | BASE_MODEL | StrOutputParser() | |
engineer_chain = ( | |
{"spec_str": writer_chain} | |
| engineer_prompt | |
| BASE_MODEL | |
| StrOutputParser() | |
| _sanitize_python_output | |
) | |
return engineer_chain.invoke({"table_mapping": str(table_mapping_df.to_dict())}) | |
def process_csv_text(value): | |
"""Process a CSV file into a dataframe, either from a string path or a file.""" | |
if isinstance(value, str): | |
df = pd.read_csv(value) | |
else: | |
df = pd.read_csv(value.name) | |
return df | |
def transform_source(source_df, code_text: str): | |
"""Use PythonAstREPLTool to transform a source dataframe using python code.""" | |
return PythonAstREPLTool(locals={"source_df": source_df}).run(code_text) | |