sentiment-analysis-app / milestone3.py
andyqin18's picture
Multiple models added
c789552
raw
history blame
1.05 kB
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
res = classifier(["I am very happy now.", "Not happy now."])
for result in res:
print(result)
# Separate each word as a token
tokens = tokenizer.tokenize("I am very happy now.")
# Generate a list of IDs, each ID for each token
token_ids = tokenizer.convert_tokens_to_ids(tokens)
# Return a dict with IDs
input_ids = tokenizer("I am very happy now.")
print(f'Tokens:{tokens}')
print(f'TokenIDs:{token_ids}')
print(f'InputIDs:{input_ids}')
X_train = ["We are very happy to show you the Transformers library.",
"Hope you don't hate it"]
batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")