Spaces:
Sleeping
Sleeping
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import torch.nn.functional as F | |
model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
res = classifier(["I am very happy now.", "Not happy now."]) | |
for result in res: | |
print(result) | |
# Separate each word as a token | |
tokens = tokenizer.tokenize("I am very happy now.") | |
# Generate a list of IDs, each ID for each token | |
token_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# Return a dict with IDs | |
input_ids = tokenizer("I am very happy now.") | |
print(f'Tokens:{tokens}') | |
print(f'TokenIDs:{token_ids}') | |
print(f'InputIDs:{input_ids}') | |
X_train = ["We are very happy to show you the Transformers library.", | |
"Hope you don't hate it"] | |
batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt") | |