import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification st.title("Sentiment Analysis App - beta") st.header("This app is to analyze the sentiments behind a text. Currently it uses \ pre-trained models without fine-tuning.") user_input = st.text_input("Enter your text:", value="Missing Sophie.Z...") st.selectbox("Please select a model:", ("Model 1", "Model 2", "Model 3")) if st.button("Analyze"): model_name = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) res = classifier(user_input) st.write(res) else: st.write("Go on! Try the app!")