import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification st.title("Sentiment Analysis App - beta") st.header("This app is to analyze the sentiments behind a text. Currently it uses \ pre-trained models without fine-tuning.") user_input = st.text_input("Enter your text:", value="Missing Sophie.Z...") user_model = st.selectbox("Please select a model:", ("distilbert-base-uncased-finetuned-sst-2-english", "cardiffnlp/twitter-roberta-base-sentiment", "finiteautomata/bertweet-base-sentiment-analysis")) def analyze(model_name, text): model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) return classifier(text) if st.button("Analyze"): if not user_input: st.write("Please enter a text.") else: with st.spinner("Hang on.... Analyzing..."): st.write(analyze(user_model, user_input)) else: st.write("Go on! Try the app!")