Spaces:
Sleeping
Sleeping
File size: 7,343 Bytes
9f3ae4a dac87fa 72314d8 dac87fa 9f3ae4a 4a4e0fe 9f3ae4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
from bgremover import BackgroundRemover
from bgremover import DamageClassifier
from bgremover import clear
from bgremover import ColorCheckerDetector
from bgremover import Segmentor
import rasterio
import os
from PIL import Image
from gradio_client import Client
PRELOAD_MODELS = False
if PRELOAD_MODELS:
backgroundRemover = BackgroundRemover()
damage_classifier = DamageClassifier()
segmentor = Segmentor()
def process(input_img):
if PRELOAD_MODELS:
global backgroundRemover
else:
backgroundRemover = BackgroundRemover()
output_mask, output_img = backgroundRemover.remove_background_gradio(input_img)
return [output_img, output_mask]
def process_classification(input_img, model_name):
if PRELOAD_MODELS:
global damage_classifier
else:
damage_classifier = DamageClassifier()
res = damage_classifier.inference(input_img, model_name)
#return {'No damage': 0.1, 'Moderately damaged': 0.1,'Damaged': 0.7, 'Severy damaged': 0.1}
return res
def segment_plant(threshold, input_im, im_mask):
if PRELOAD_MODELS:
global backgroundRemover
else:
backgroundRemover = BackgroundRemover()
print("segment plant", threshold)
res, mask = backgroundRemover.apply_mask(input_im, im_mask, threshold)
return res, mask
def rectangle(im, im_mask):
colorCheckerDetector = ColorCheckerDetector()
return colorCheckerDetector.process(im_mask, im)
def get_file_content(file):
with rasterio.open(file) as src:
# Read the image data
image_data = src.read()
image = Image.fromarray((image_data[0] * 255).astype(np.uint8))
return (gr.Image(value=image, type="pil"))
def on_img_color_load(input):
print("on_img_color_load")
print(input)
def run_anything_task(input_image):
text_prompt = "color-checker"
task_type = "inpainting"
#text_prompt = "rocket"
if PRELOAD_MODELS:
global segmentor
else:
segmentor = Segmentor()
return segmentor.process(input_image, text_prompt)
with gr.Blocks(title="Phenotyping pipeline") as demo:
# gr.Markdown(
# """
# # Phenotyping pipeline
# Modular phenotyping pipeline.
# """)
big_block = gr.HTML("""
<style>
body {
font-family: Arial, sans-serif;
background-color: white
margin: 0;
}
header {
display: flex;
justify-content: space-between;
align-items: center;
padding: 5px;
color: #fff;
}
hr {
border: 1px solid #ddd;
margin: 5px;
}
</style>
<header>
<div style="display: flex; align-items: center;">
<div style="text-align: left;">
<h1>Phenotyping pipeline</h1>
<p>Modular phenotyping pipeline.</p>
<h3>Tropical Forages Program</h3>
<p><b>Authors: </b>Andres Felipe Ruiz-Hurtado, Juan Andrés Cardoso Arango</p>
<p></p>
</div>
</div>
<div style="background-color: white; padding: 5px; border-radius: 15px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);">
<img src="https://alliancebioversityciat.org/sites/default/files/styles/1920_scale/public/images/Alliance%20Logo%20Refresh-color.jpg" alt="Logo" width="200" height="100">
</div>
</header>
""")
input_im = gr.Image(render=False)
im_result = gr.Image(render=False)
im_mask = gr.Image(render=False)
im_masked = gr.Image(render=False)
im_color = gr.Image(render=False)
im_color_orginal = gr.Image(render=False)
im_color.change(on_img_color_load, im_color)
im_color_checker_mask = gr.Image(render=False)
with gr.Tab("Damage Classification"):
model_option = gr.Dropdown(
["Regnet", "Resnet18", "Resnet152", "Googlenet"]
, label="Classification model"
, info="The classification model to use for inference"
, value="Regnet"
)
gr.Interface(fn=process_classification
, inputs= [input_im, model_option]
, outputs="label"
, examples = [
["183_Week_1_(28th_Aug_-_1st_Sept.)_2023_nd.jpg"]
,["20_WEEK_5_(_FIELD_A)_md.jpg"]
,["30_WEEK_5_(_FIELD_A)_damaged.jpg"]
,["25_WEEK_4_(_Field_A)_sd.jpg"]
#,["30_WEEK_4_(_Field_A)_sd.jpg"]
]
)
#gr.Button("Classify")
with gr.Tab("Color Checker detection"):
#gr.Interface(fn=process_classification, inputs= input_im, outputs="label" )
#gr.Button("Classify")
gr.Interface(fn=run_anything_task, inputs= input_im, outputs=gr.Gallery() )
with gr.Tab("Color Calibration"):
#gr.Interface(fn=process_classification, inputs= input_im, outputs="label" )
#gr.Button("Classify")
gr.Interface(fn=rectangle
, inputs= [input_im, im_color_checker_mask]
, outputs=gr.Gallery()
, examples = [["264_WEEK_5_(_FIELD_A).jpg","264_mask.jpg"]]
)
gr.Button("Calibrate")
with gr.Tab("Plant segmentation"):
with gr.Column(scale=1):
#gr.Interface(fn=process, inputs= gr.Image(), outputs=[im_result, "image"] )
gr.Interface(fn=process, inputs= input_im, outputs=[im_result, im_mask] )
slider_thresh = gr.Slider(minimum=0, maximum=255, value=100, step=1, label="Threshold"
, info="Segmentation threshold", interactive=True)
slider_thresh.release(fn=segment_plant, inputs = [slider_thresh, input_im, im_mask], outputs = [gr.Image(), gr.Image()])
#button = gr.Button("Clip")
#button.click()
#gr.Image(value=im_masked)
# with gr.Tab("Damage segmentation"):
# gr.Button("Damage")
# with gr.Tab("Batch processing"):
# gr.Button("Run")
# with gr.Tab("Batch processing"):
# gr.Interface(fn=run_anything_task, inputs= input_im, outputs= gr.Gallery())
#with gr.Tab("Tests"):
# gr.Markdown("# Preview Images:")
# with gr.Group(visible=True):
# with gr.Row(visible=True):
# preview = gr.FileExplorer( scale = 1,
# glob = "*.tif",
# value = ["./"],
# file_count = "single",
# root_dir = "./",
# elem_id = "file",
# every= 1,
# interactive=True
# )
# #image = gr.Image(type="pil")
# image = gr.Image()
# preview.change(get_file_content, preview, image)
if __name__ == "__main__":
#demo.launch(show_api=False)
#client = Client(demo)
#demo.launch(show_api=True, server_name="0.0.0.0", server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7861)))
demo.launch(server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), share=False)
|