Spaces:
Sleeping
Sleeping
import gradio as gr | |
from bgremover import BackgroundRemover | |
from bgremover import DamageClassifier | |
from bgremover import clear | |
from bgremover import ColorCheckerDetector | |
from bgremover import Segmentor | |
import rasterio | |
import os | |
from PIL import Image | |
from gradio_client import Client | |
PRELOAD_MODELS = False | |
if PRELOAD_MODELS: | |
backgroundRemover = BackgroundRemover() | |
damage_classifier = DamageClassifier() | |
segmentor = Segmentor() | |
def process(input_img): | |
if PRELOAD_MODELS: | |
global backgroundRemover | |
else: | |
backgroundRemover = BackgroundRemover() | |
output_mask, output_img = backgroundRemover.remove_background_gradio(input_img) | |
return [output_img, output_mask] | |
def process_classification(input_img, model_name): | |
if PRELOAD_MODELS: | |
global damage_classifier | |
else: | |
damage_classifier = DamageClassifier() | |
res = damage_classifier.inference(input_img, model_name) | |
#return {'No damage': 0.1, 'Moderately damaged': 0.1,'Damaged': 0.7, 'Severy damaged': 0.1} | |
return res | |
def segment_plant(threshold, input_im, im_mask): | |
if PRELOAD_MODELS: | |
global backgroundRemover | |
else: | |
backgroundRemover = BackgroundRemover() | |
print("segment plant", threshold) | |
res, mask = backgroundRemover.apply_mask(input_im, im_mask, threshold) | |
return res, mask | |
def rectangle(im, im_mask): | |
colorCheckerDetector = ColorCheckerDetector() | |
return colorCheckerDetector.process(im_mask, im) | |
def get_file_content(file): | |
with rasterio.open(file) as src: | |
# Read the image data | |
image_data = src.read() | |
image = Image.fromarray((image_data[0] * 255).astype(np.uint8)) | |
return (gr.Image(value=image, type="pil")) | |
def on_img_color_load(input): | |
print("on_img_color_load") | |
print(input) | |
def run_anything_task(input_image): | |
text_prompt = "color-checker" | |
task_type = "inpainting" | |
#text_prompt = "rocket" | |
if PRELOAD_MODELS: | |
global segmentor | |
else: | |
segmentor = Segmentor() | |
return segmentor.process(input_image, text_prompt) | |
with gr.Blocks(title="Phenotyping pipeline") as demo: | |
# gr.Markdown( | |
# """ | |
# # Phenotyping pipeline | |
# Modular phenotyping pipeline. | |
# """) | |
big_block = gr.HTML(""" | |
<style> | |
body { | |
font-family: Arial, sans-serif; | |
background-color: white | |
margin: 0; | |
} | |
header { | |
display: flex; | |
justify-content: space-between; | |
align-items: center; | |
padding: 5px; | |
color: #fff; | |
} | |
hr { | |
border: 1px solid #ddd; | |
margin: 5px; | |
} | |
</style> | |
<header> | |
<div style="display: flex; align-items: center;"> | |
<div style="text-align: left;"> | |
<h1>Phenotyping pipeline</h1> | |
<p>Modular phenotyping pipeline.</p> | |
<h3>Tropical Forages Program</h3> | |
<p><b>Authors: </b>Andres Felipe Ruiz-Hurtado, Juan Andrés Cardoso Arango</p> | |
<p></p> | |
</div> | |
</div> | |
<div style="background-color: white; padding: 5px; border-radius: 15px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);"> | |
<img src='file/logo.png' alt="Logo" width="200" height="100"> | |
</div> | |
</header> | |
""") | |
input_im = gr.Image(render=False) | |
im_result = gr.Image(render=False) | |
im_mask = gr.Image(render=False) | |
im_masked = gr.Image(render=False) | |
im_color = gr.Image(render=False) | |
im_color_orginal = gr.Image(render=False) | |
im_color.change(on_img_color_load, im_color) | |
im_color_checker_mask = gr.Image(render=False) | |
with gr.Tab("Damage Classification"): | |
model_option = gr.Dropdown( | |
["Regnet", "Resnet18", "Resnet152", "Googlenet"] | |
, label="Classification model" | |
, info="The classification model to use for inference" | |
, value="Regnet" | |
) | |
gr.Interface(fn=process_classification | |
, inputs= [input_im, model_option] | |
, outputs="label" | |
, examples = [ | |
["183_Week_1_(28th_Aug_-_1st_Sept.)_2023_nd.jpg"] | |
,["20_WEEK_5_(_FIELD_A)_md.jpg"] | |
,["30_WEEK_5_(_FIELD_A)_damaged.jpg"] | |
,["25_WEEK_4_(_Field_A)_sd.jpg"] | |
#,["30_WEEK_4_(_Field_A)_sd.jpg"] | |
] | |
) | |
#gr.Button("Classify") | |
with gr.Tab("Color Checker detection"): | |
#gr.Interface(fn=process_classification, inputs= input_im, outputs="label" ) | |
#gr.Button("Classify") | |
gr.Interface(fn=run_anything_task, inputs= input_im, outputs=gr.Gallery() ) | |
with gr.Tab("Color Calibration"): | |
#gr.Interface(fn=process_classification, inputs= input_im, outputs="label" ) | |
#gr.Button("Classify") | |
gr.Interface(fn=rectangle | |
, inputs= [input_im, im_color_checker_mask] | |
, outputs=gr.Gallery() | |
, examples = [["264_WEEK_5_(_FIELD_A).jpg","264_mask.jpg"]] | |
) | |
gr.Button("Calibrate") | |
with gr.Tab("Plant segmentation"): | |
with gr.Column(scale=1): | |
#gr.Interface(fn=process, inputs= gr.Image(), outputs=[im_result, "image"] ) | |
gr.Interface(fn=process, inputs= input_im, outputs=[im_result, im_mask] ) | |
slider_thresh = gr.Slider(minimum=0, maximum=255, value=100, step=1, label="Threshold" | |
, info="Segmentation threshold", interactive=True) | |
slider_thresh.release(fn=segment_plant, inputs = [slider_thresh, input_im, im_mask], outputs = [gr.Image(), gr.Image()]) | |
#button = gr.Button("Clip") | |
#button.click() | |
#gr.Image(value=im_masked) | |
# with gr.Tab("Damage segmentation"): | |
# gr.Button("Damage") | |
# with gr.Tab("Batch processing"): | |
# gr.Button("Run") | |
# with gr.Tab("Batch processing"): | |
# gr.Interface(fn=run_anything_task, inputs= input_im, outputs= gr.Gallery()) | |
#with gr.Tab("Tests"): | |
# gr.Markdown("# Preview Images:") | |
# with gr.Group(visible=True): | |
# with gr.Row(visible=True): | |
# preview = gr.FileExplorer( scale = 1, | |
# glob = "*.tif", | |
# value = ["./"], | |
# file_count = "single", | |
# root_dir = "./", | |
# elem_id = "file", | |
# every= 1, | |
# interactive=True | |
# ) | |
# #image = gr.Image(type="pil") | |
# image = gr.Image() | |
# preview.change(get_file_content, preview, image) | |
if __name__ == "__main__": | |
#demo.launch(show_api=False) | |
#client = Client(demo) | |
#demo.launch(show_api=True, server_name="0.0.0.0", server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7861))) | |
demo.launch(server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), share=False) | |