import gradio as gr from bgremover import BackgroundRemover from bgremover import DamageClassifier from bgremover import clear from bgremover import ColorCheckerDetector from bgremover import Segmentor import rasterio import os from PIL import Image from gradio_client import Client PRELOAD_MODELS = False if PRELOAD_MODELS: backgroundRemover = BackgroundRemover() damage_classifier = DamageClassifier() segmentor = Segmentor() def process(input_img): if PRELOAD_MODELS: global backgroundRemover else: backgroundRemover = BackgroundRemover() output_mask, output_img = backgroundRemover.remove_background_gradio(input_img) return [output_img, output_mask] def process_classification(input_img, model_name): if PRELOAD_MODELS: global damage_classifier else: damage_classifier = DamageClassifier() res = damage_classifier.inference(input_img, model_name) #return {'No damage': 0.1, 'Moderately damaged': 0.1,'Damaged': 0.7, 'Severy damaged': 0.1} return res def segment_plant(threshold, input_im, im_mask): if PRELOAD_MODELS: global backgroundRemover else: backgroundRemover = BackgroundRemover() print("segment plant", threshold) res, mask = backgroundRemover.apply_mask(input_im, im_mask, threshold) return res, mask def rectangle(im, im_mask): colorCheckerDetector = ColorCheckerDetector() return colorCheckerDetector.process(im_mask, im) def get_file_content(file): with rasterio.open(file) as src: # Read the image data image_data = src.read() image = Image.fromarray((image_data[0] * 255).astype(np.uint8)) return (gr.Image(value=image, type="pil")) def on_img_color_load(input): print("on_img_color_load") print(input) def run_anything_task(input_image): text_prompt = "color-checker" task_type = "inpainting" #text_prompt = "rocket" if PRELOAD_MODELS: global segmentor else: segmentor = Segmentor() return segmentor.process(input_image, text_prompt) with gr.Blocks(title="Phenotyping pipeline") as demo: # gr.Markdown( # """ # # Phenotyping pipeline # Modular phenotyping pipeline. # """) big_block = gr.HTML(""" Phenotyping pipeline Modular phenotyping pipeline. Tropical Forages Program Authors: Andres Felipe Ruiz-Hurtado, Juan Andrés Cardoso Arango """) input_im = gr.Image(render=False) im_result = gr.Image(render=False) im_mask = gr.Image(render=False) im_masked = gr.Image(render=False) im_color = gr.Image(render=False) im_color_orginal = gr.Image(render=False) im_color.change(on_img_color_load, im_color) im_color_checker_mask = gr.Image(render=False) with gr.Tab("Damage Classification"): model_option = gr.Dropdown( ["Regnet", "Resnet18", "Resnet152", "Googlenet"] , label="Classification model" , info="The classification model to use for inference" , value="Regnet" ) gr.Interface(fn=process_classification , inputs= [input_im, model_option] , outputs="label" , examples = [ ["183_Week_1_(28th_Aug_-_1st_Sept.)_2023_nd.jpg"] ,["20_WEEK_5_(_FIELD_A)_md.jpg"] ,["30_WEEK_5_(_FIELD_A)_damaged.jpg"] ,["25_WEEK_4_(_Field_A)_sd.jpg"] #,["30_WEEK_4_(_Field_A)_sd.jpg"] ] ) #gr.Button("Classify") with gr.Tab("Color Checker detection"): #gr.Interface(fn=process_classification, inputs= input_im, outputs="label" ) #gr.Button("Classify") gr.Interface(fn=run_anything_task, inputs= input_im, outputs=gr.Gallery() ) with gr.Tab("Color Calibration"): #gr.Interface(fn=process_classification, inputs= input_im, outputs="label" ) #gr.Button("Classify") gr.Interface(fn=rectangle , inputs= [input_im, im_color_checker_mask] , outputs=gr.Gallery() , examples = [["264_WEEK_5_(_FIELD_A).jpg","264_mask.jpg"]] ) gr.Button("Calibrate") with gr.Tab("Plant segmentation"): with gr.Column(scale=1): #gr.Interface(fn=process, inputs= gr.Image(), outputs=[im_result, "image"] ) gr.Interface(fn=process, inputs= input_im, outputs=[im_result, im_mask] ) slider_thresh = gr.Slider(minimum=0, maximum=255, value=100, step=1, label="Threshold" , info="Segmentation threshold", interactive=True) slider_thresh.release(fn=segment_plant, inputs = [slider_thresh, input_im, im_mask], outputs = [gr.Image(), gr.Image()]) #button = gr.Button("Clip") #button.click() #gr.Image(value=im_masked) # with gr.Tab("Damage segmentation"): # gr.Button("Damage") # with gr.Tab("Batch processing"): # gr.Button("Run") # with gr.Tab("Batch processing"): # gr.Interface(fn=run_anything_task, inputs= input_im, outputs= gr.Gallery()) #with gr.Tab("Tests"): # gr.Markdown("# Preview Images:") # with gr.Group(visible=True): # with gr.Row(visible=True): # preview = gr.FileExplorer( scale = 1, # glob = "*.tif", # value = ["./"], # file_count = "single", # root_dir = "./", # elem_id = "file", # every= 1, # interactive=True # ) # #image = gr.Image(type="pil") # image = gr.Image() # preview.change(get_file_content, preview, image) if __name__ == "__main__": #demo.launch(show_api=False) #client = Client(demo) #demo.launch(show_api=True, server_name="0.0.0.0", server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7861))) demo.launch(server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), share=False)
Modular phenotyping pipeline.
Authors: Andres Felipe Ruiz-Hurtado, Juan Andrés Cardoso Arango