Spaces:
Sleeping
Sleeping
angelesteban00
commited on
Commit
·
1299579
1
Parent(s):
cbd1f0b
Update app.py
Browse files
app.py
CHANGED
@@ -9,21 +9,21 @@ from gradio.themes.base import Base
|
|
9 |
#import key_param
|
10 |
import os
|
11 |
|
12 |
-
|
13 |
-
#
|
|
|
14 |
|
15 |
-
client = MongoClient(mongo_uri)
|
16 |
-
dbName = "langchain_demo"
|
17 |
-
collectionName = "collection_of_text_blobs"
|
18 |
-
collection = client[dbName][collectionName]
|
19 |
|
20 |
-
# Define the text embedding model
|
21 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
22 |
|
23 |
-
# Initialize the Vector Store
|
24 |
-
vectorStore = MongoDBAtlasVectorSearch( collection, embeddings, index_name="default" )
|
25 |
|
26 |
-
def query_data(query):
|
27 |
# Convert question to vector using OpenAI embeddings
|
28 |
# Perform Atlas Vector Search using Langchain's vectorStore
|
29 |
# similarity_search returns MongoDB documents most similar to the query
|
@@ -65,6 +65,7 @@ with gr.Blocks(theme=Base(), title="Question Answering App using Vector Search +
|
|
65 |
# Question Answering App using Atlas Vector Search + RAG Architecture
|
66 |
""")
|
67 |
openai_api_key = gr.Textbox(label = "OpenAI 3.5 API Key", value = "sk-", lines = 1)
|
|
|
68 |
textbox = gr.Textbox(label="Enter your Question:")
|
69 |
with gr.Row():
|
70 |
button = gr.Button("Submit", variant="primary")
|
@@ -74,6 +75,9 @@ with gr.Blocks(theme=Base(), title="Question Answering App using Vector Search +
|
|
74 |
|
75 |
# Call query_data function upon clicking the Submit button
|
76 |
|
77 |
-
button.click(query_data,
|
|
|
|
|
|
|
78 |
|
79 |
demo.launch()
|
|
|
9 |
#import key_param
|
10 |
import os
|
11 |
|
12 |
+
def query_data(query):
|
13 |
+
#mongo_uri = os.getenv("MONGO_URI")
|
14 |
+
#openai_api_key = os.getenv("OPENAI_API_KEY")
|
15 |
|
16 |
+
client = MongoClient(mongo_uri)
|
17 |
+
dbName = "langchain_demo"
|
18 |
+
collectionName = "collection_of_text_blobs"
|
19 |
+
collection = client[dbName][collectionName]
|
20 |
|
21 |
+
# Define the text embedding model
|
22 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
23 |
|
24 |
+
# Initialize the Vector Store
|
25 |
+
vectorStore = MongoDBAtlasVectorSearch( collection, embeddings, index_name="default" )
|
26 |
|
|
|
27 |
# Convert question to vector using OpenAI embeddings
|
28 |
# Perform Atlas Vector Search using Langchain's vectorStore
|
29 |
# similarity_search returns MongoDB documents most similar to the query
|
|
|
65 |
# Question Answering App using Atlas Vector Search + RAG Architecture
|
66 |
""")
|
67 |
openai_api_key = gr.Textbox(label = "OpenAI 3.5 API Key", value = "sk-", lines = 1)
|
68 |
+
mongo_uri = gr.Textbox(label = "Mongo URI", value = "mongodb+srv://", lines = 1)
|
69 |
textbox = gr.Textbox(label="Enter your Question:")
|
70 |
with gr.Row():
|
71 |
button = gr.Button("Submit", variant="primary")
|
|
|
75 |
|
76 |
# Call query_data function upon clicking the Submit button
|
77 |
|
78 |
+
button.click(query_data,
|
79 |
+
inputs=[textbox, openai_api_key, mongo_uri],
|
80 |
+
outputs=[output1, output2]
|
81 |
+
)
|
82 |
|
83 |
demo.launch()
|