File size: 8,088 Bytes
45916af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb2571
45916af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebc8ea
45916af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc58348
45916af
dc58348
45916af
dc58348
45916af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import glob
import os
import random

import librosa
import numpy as np
import soundfile as sf
import torch
from numpy.random import default_rng
from pydtmc import MarkovChain
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset

from config import CONFIG

np.random.seed(0)
rng = default_rng()


def load_audio(
        path,
        sample_rate: int = 16000,
        chunk_len=None,
):
    with sf.SoundFile(path) as f:
        sr = f.samplerate
        audio_len = f.frames

        if chunk_len is not None and chunk_len < audio_len:
            start_index = torch.randint(0, audio_len - chunk_len, (1,))[0]

            frames = f._prepare_read(start_index, start_index + chunk_len, -1)
            audio = f.read(frames, always_2d=True, dtype="float32")

        else:
            audio = f.read(always_2d=True, dtype="float32")

    if sr != sample_rate:
        audio = librosa.resample(np.squeeze(audio), sr, sample_rate)[:, np.newaxis]

    return audio.T


def pad(sig, length):
    if sig.shape[1] < length:
        pad_len = length - sig.shape[1]
        sig = torch.hstack((sig, torch.zeros((sig.shape[0], pad_len))))

    else:
        start = random.randint(0, sig.shape[1] - length)
        sig = sig[:, start:start + length]
    return sig


class MaskGenerator:
    def __init__(self, is_train=True, probs=((0.9, 0.1), (0.5, 0.1), (0.5, 0.5))):
        '''
            is_train: if True, mask generator for training otherwise for evaluation
            probs: a list of transition probability (p_N, p_L) for Markov Chain. Only allow 1 tuple if 'is_train=False'
        '''
        self.is_train = is_train
        self.probs = probs
        self.mcs = []
        if self.is_train:
            for prob in probs:
                self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
        else:
            assert len(probs) == 1
            prob = self.probs[0]
            self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))

    def gen_mask(self, length, seed=0):
        if self.is_train:
            mc = random.choice(self.mcs)
        else:
            mc = self.mcs[0]
        mask = mc.walk(length - 1, seed=seed)
        mask = np.array(list(map(int, mask)))
        return mask


class TestLoader(Dataset):
    def __init__(self):
        dataset_name = CONFIG.DATA.dataset
        self.mask = CONFIG.DATA.EVAL.masking

        self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
        txt_list = CONFIG.DATA.data_dir[dataset_name]['test']
        self.data_list = self.load_txt(txt_list)
        if self.mask == 'real':
            trace_txt = glob.glob(os.path.join(CONFIG.DATA.EVAL.trace_path, '*.txt'))
            trace_txt.sort()
            self.trace_list = [1 - np.array(list(map(int, open(txt, 'r').read().strip('\n').split('\n')))) for txt in
                               trace_txt]
        else:
            self.mask_generator = MaskGenerator(is_train=False, probs=CONFIG.DATA.EVAL.transition_probs)

        self.sr = CONFIG.DATA.sr
        self.stride = CONFIG.DATA.stride
        self.window_size = CONFIG.DATA.window_size
        self.audio_chunk_len = CONFIG.DATA.audio_chunk_len
        self.p_size = CONFIG.DATA.EVAL.packet_size  # 20ms
        self.hann = torch.sqrt(torch.hann_window(self.window_size))

    def __len__(self):
        return len(self.data_list)

    def load_txt(self, txt_list):
        target = []
        with open(txt_list) as f:
            for line in f:
                target.append(os.path.join(self.target_root, line.strip('\n')))
        target = list(set(target))
        target.sort()
        return target

    def __getitem__(self, index):
        target = load_audio(self.data_list[index], sample_rate=self.sr)
        target = target[:, :(target.shape[1] // self.p_size) * self.p_size]

        sig = np.reshape(target, (-1, self.p_size)).copy()
        if self.mask == 'real':
            mask = self.trace_list[index % len(self.trace_list)]
            mask = np.repeat(mask, np.ceil(len(sig) / len(mask)), 0)[:len(sig)][:, np.newaxis]
        else:
            mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
        sig *= mask
        sig = torch.tensor(sig).reshape(-1)

        target = torch.tensor(target).squeeze(0)

        sig_wav = sig.clone()
        target_wav = target.clone()

        target = torch.stft(target, self.window_size, self.stride, window=self.hann,
                            return_complex=False).permute(2, 0, 1)
        sig = torch.stft(sig, self.window_size, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
        return sig.float(), target.float(), sig_wav, target_wav


class BlindTestLoader(Dataset):
    def __init__(self, test_dir):
        self.data_list = glob.glob(os.path.join(test_dir, '*.wav'))
        self.sr = CONFIG.DATA.sr
        self.stride = CONFIG.DATA.stride
        self.chunk_len = CONFIG.DATA.window_size
        self.hann = torch.sqrt(torch.hann_window(self.chunk_len))

    def __len__(self):
        return len(self.data_list)

    def __getitem__(self, index):
        sig = load_audio(self.data_list[index], sample_rate=self.sr)
        sig = torch.from_numpy(sig).squeeze(0)
        sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
        return sig.float()


class TrainDataset(Dataset):

    def __init__(self, mode='train'):
        dataset_name = CONFIG.DATA.dataset
        self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']

        txt_list = CONFIG.DATA.data_dir[dataset_name]['train']
        self.data_list = self.load_txt(txt_list)

        if mode == 'train':
            self.data_list, _ = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)

        elif mode == 'val':
            _, self.data_list = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)

        self.p_sizes = CONFIG.DATA.TRAIN.packet_sizes
        self.mode = mode
        self.sr = CONFIG.DATA.sr
        self.window = CONFIG.DATA.audio_chunk_len
        self.stride = CONFIG.DATA.stride
        self.chunk_len = CONFIG.DATA.window_size
        self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
        self.mask_generator = MaskGenerator(is_train=True, probs=CONFIG.DATA.TRAIN.transition_probs)

    def __len__(self):
        return len(self.data_list)

    def load_txt(self, txt_list):
        target = []
        with open(txt_list) as f:
            for line in f:
                target.append(os.path.join(self.target_root, line.strip('\n')))
        target = list(set(target))
        target.sort()
        return target

    def fetch_audio(self, index):
        sig = load_audio(self.data_list[index], sample_rate=self.sr, chunk_len=self.window)
        while sig.shape[1] < self.window:
            idx = torch.randint(0, len(self.data_list), (1,))[0]
            pad_len = self.window - sig.shape[1]
            if pad_len < 0.02 * self.sr:
                padding = np.zeros((1, pad_len), dtype=np.float)
            else:
                padding = load_audio(self.data_list[idx], sample_rate=self.sr, chunk_len=pad_len)
            sig = np.hstack((sig, padding))
        return sig

    def __getitem__(self, index):
        sig = self.fetch_audio(index)

        sig = sig.reshape(-1).astype(np.float32)

        target = torch.tensor(sig.copy())
        p_size = random.choice(self.p_sizes)

        sig = np.reshape(sig, (-1, p_size))
        mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
        sig *= mask
        sig = torch.tensor(sig.copy()).reshape(-1)

        target = torch.stft(target, self.chunk_len, self.stride, window=self.hann,
                            return_complex=False).permute(2, 0, 1).float()
        sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False)
        sig = sig.permute(2, 0, 1).float()
        return sig, target