anhnv125 commited on
Commit
0740cf3
·
1 Parent(s): 5d28d5c

Update PLCMOS/plc_mos.py

Browse files
Files changed (1) hide show
  1. PLCMOS/plc_mos.py +0 -93
PLCMOS/plc_mos.py CHANGED
@@ -7,9 +7,6 @@ import onnxruntime as ort
7
  from numpy.fft import rfft
8
  from numpy.lib.stride_tricks import as_strided
9
 
10
- from utils.utils import LSD
11
-
12
-
13
  class PLCMOSEstimator():
14
  def __init__(self, model_version=1):
15
  """
@@ -155,93 +152,3 @@ class PLCMOSEstimator():
155
  mos_2 = float(session.run(None, onnx_inputs)[0])
156
  mos = [mos, mos_2]
157
  return mos
158
-
159
-
160
- def run_with_defaults(degraded, clean, allow_set_size_difference=False, progress=False, model_ver=1):
161
- import soundfile as sf
162
- import glob
163
- import tqdm
164
- import pandas as pd
165
-
166
- if os.path.isfile(degraded):
167
- degraded = [degraded]
168
- else:
169
- degraded = list(glob.glob(os.path.join(degraded, "*.wav")))
170
-
171
- if os.path.isfile(clean):
172
- clean = [clean] * len(degraded)
173
- else:
174
- clean = list(glob.glob(os.path.join(clean, "*.wav")))
175
-
176
- degraded = list(sorted(degraded))
177
- clean = list(sorted(clean))
178
-
179
- if not allow_set_size_difference:
180
- assert len(degraded) == len(clean)
181
-
182
- clean_dict = {os.path.basename(x): x for x in clean}
183
- clean = []
184
- for degraded_name in degraded:
185
- clean.append(clean_dict[os.path.basename(degraded_name)])
186
- assert len(degraded) == len(clean)
187
-
188
- iter = zip(degraded, clean)
189
- if progress:
190
- iter = tqdm.tqdm(iter, total=len(degraded))
191
- results = []
192
-
193
- estimator = PLCMOSEstimator(model_version=model_ver)
194
- intr = []
195
- nonintr = []
196
- lsds = []
197
- sisdrs = []
198
- for degraded_name, clean_name in iter:
199
- audio_degraded, sr_degraded = sf.read(degraded_name)
200
- audio_clean, sr_clean = sf.read(clean_name)
201
- lsd = LSD(audio_clean, audio_degraded)
202
- audio_degraded = librosa.resample(audio_degraded, 48000, 16000, res_type='kaiser_fast')
203
- audio_clean = librosa.resample(audio_clean, 48000, 16000, res_type='kaiser_fast')
204
-
205
- score = estimator.run(audio_degraded, audio_clean)
206
- results.append(
207
- {
208
- "filename_degraded": degraded_name,
209
- "filename_clean": clean_name,
210
- "intrusive" + str(model_ver): score[0],
211
- "non-intrusive" + str(model_ver): score[1],
212
-
213
- }
214
- )
215
- lsds.append(lsd)
216
- intr.append(score[0])
217
- nonintr.append(score[1])
218
- iter.set_description("Intru {}, Non-Intr {}, LSD {}, SISDR {}".format(sum(intr) / len(intr),
219
- sum(nonintr) / len(nonintr),
220
- sum(lsds) / len(lsds),
221
- sum(sisdrs) / len(sisdrs)))
222
-
223
- return pd.DataFrame(results)
224
-
225
-
226
- if __name__ == "__main__":
227
- import argparse
228
-
229
- parser = argparse.ArgumentParser()
230
- parser.add_argument("--degraded", type=str, required=True, help="Path to folder with degraded audio files")
231
- parser.add_argument("--clean", type=str, required=True, help="Path to folder with clean audio files")
232
- parser.add_argument("--model-ver", type=int, default=1, help="Model version to use")
233
- parser.add_argument("--out-csv", type=str, default=None, help="Path to output CSV file, if CSV output is desired")
234
- parser.add_argument("--allow-set-size-difference", type=bool, default=True,
235
- help="Set to true to allow the number of degraded and clean audio files to be different")
236
- args = parser.parse_args()
237
-
238
- results = run_with_defaults(args.degraded, args.clean, args.allow_set_size_difference, True, args.model_ver)
239
-
240
- if args.out_csv is not None:
241
- results.to_csv(args.out_csv)
242
- else:
243
- import pandas as pd
244
-
245
- pd.set_option("display.max_rows", None)
246
- # print(results)
247
- print("")
 
7
  from numpy.fft import rfft
8
  from numpy.lib.stride_tricks import as_strided
9
 
 
 
 
10
  class PLCMOSEstimator():
11
  def __init__(self, model_version=1):
12
  """
 
152
  mos_2 = float(session.run(None, onnx_inputs)[0])
153
  mos = [mos, mos_2]
154
  return mos