import os import librosa import pytorch_lightning as pl import soundfile as sf import torch from torch import nn from torch.utils.data import DataLoader from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility as STOI from PLCMOS.plc_mos import PLCMOSEstimator from config import CONFIG from loss import Loss from models.blocks import Encoder, Predictor from utils.utils import visualize, LSD plcmos = PLCMOSEstimator() class PLCModel(pl.LightningModule): def __init__(self, train_dataset=None, val_dataset=None, window_size=960, enc_layers=4, enc_in_dim=384, enc_dim=768, pred_dim=512, pred_layers=1, pred_ckpt_path='lightning_logs/predictor/checkpoints/predictor.ckpt'): super(PLCModel, self).__init__() self.window_size = window_size self.hop_size = window_size // 2 self.learning_rate = CONFIG.TRAIN.lr self.hparams.batch_size = CONFIG.TRAIN.batch_size self.enc_layers = enc_layers self.enc_in_dim = enc_in_dim self.enc_dim = enc_dim self.pred_dim = pred_dim self.pred_layers = pred_layers self.train_dataset = train_dataset self.val_dataset = val_dataset self.stoi = STOI(48000) self.pesq = PESQ(16000, 'wb') if pred_ckpt_path is not None: self.predictor = Predictor.load_from_checkpoint(pred_ckpt_path) else: self.predictor = Predictor(window_size=self.window_size, lstm_dim=self.pred_dim, lstm_layers=self.pred_layers) self.joiner = nn.Sequential( nn.Conv2d(3, 48, kernel_size=(9, 1), stride=1, padding=(4, 0), padding_mode='reflect', groups=3), nn.LeakyReLU(0.2), nn.Conv2d(48, 2, kernel_size=1, stride=1, padding=0, groups=2), ) self.encoder = Encoder(in_dim=self.window_size, dim=self.enc_in_dim, depth=self.enc_layers, mlp_dim=self.enc_dim) self.loss = Loss() self.window = torch.sqrt(torch.hann_window(self.window_size)) self.save_hyperparameters('window_size', 'enc_layers', 'enc_in_dim', 'enc_dim', 'pred_dim', 'pred_layers') def forward(self, x): """ Input: real-imaginary; shape (B, F, T, 2); F = hop_size + 1 Output: real-imaginary """ B, C, F, T = x.shape x = x.permute(3, 0, 1, 2).unsqueeze(-1) prev_mag = torch.zeros((B, 1, F, 1), device=x.device) predictor_state = torch.zeros((2, self.predictor.lstm_layers, 1, self.predictor.lstm_dim), device=x.device) mlp_state = torch.zeros((self.encoder.depth, 2, 1, B, self.encoder.dim), device=x.device) result = [] for step in x: feat, mlp_state = self.encoder(step, mlp_state) prev_mag, predictor_state = self.predictor(prev_mag, predictor_state) feat = torch.cat((feat, prev_mag), 1) feat = self.joiner(feat) feat = feat + step result.append(feat) prev_mag = torch.linalg.norm(feat, dim=1, ord=1, keepdims=True) # compute magnitude output = torch.cat(result, -1) return output def forward_onnx(self, x, prev_mag, predictor_state=None, mlp_state=None): prev_mag, predictor_state = self.predictor(prev_mag, predictor_state) feat, mlp_state = self.encoder(x, mlp_state) feat = torch.cat((feat, prev_mag), 1) feat = self.joiner(feat) prev_mag = torch.linalg.norm(feat, dim=1, ord=1, keepdims=True) feat = feat + x return feat, prev_mag, predictor_state, mlp_state def train_dataloader(self): return DataLoader(self.train_dataset, shuffle=False, batch_size=self.hparams.batch_size, num_workers=CONFIG.TRAIN.workers, persistent_workers=True) def val_dataloader(self): return DataLoader(self.val_dataset, shuffle=False, batch_size=self.hparams.batch_size, num_workers=CONFIG.TRAIN.workers, persistent_workers=True) def training_step(self, batch, batch_idx): x_in, y = batch f_0 = x_in[:, :, 0:1, :] x = x_in[:, :, 1:, :] x = self(x) x = torch.cat([f_0, x], dim=2) loss = self.loss(x, y) self.log('train_loss', loss, logger=True) return loss def validation_step(self, val_batch, batch_idx): x, y = val_batch f_0 = x[:, :, 0:1, :] x_in = x[:, :, 1:, :] pred = self(x_in) pred = torch.cat([f_0, pred], dim=2) loss = self.loss(pred, y) self.window = self.window.to(pred.device) pred = torch.view_as_complex(pred.permute(0, 2, 3, 1).contiguous()) pred = torch.istft(pred, self.window_size, self.hop_size, window=self.window) y = torch.view_as_complex(y.permute(0, 2, 3, 1).contiguous()) y = torch.istft(y, self.window_size, self.hop_size, window=self.window) self.log('val_loss', loss, on_step=False, on_epoch=True, logger=True, prog_bar=True, sync_dist=True) if batch_idx == 0: i = torch.randint(0, x.shape[0], (1,)).item() x = torch.view_as_complex(x.permute(0, 2, 3, 1).contiguous()) x = torch.istft(x[i], self.window_size, self.hop_size, window=self.window) self.trainer.logger.log_spectrogram(y[i], x, pred[i], self.current_epoch) self.trainer.logger.log_audio(y[i], x, pred[i], self.current_epoch) def test_step(self, test_batch, batch_idx): inp, tar, inp_wav, tar_wav = test_batch inp_wav = inp_wav.squeeze() tar_wav = tar_wav.squeeze() f_0 = inp[:, :, 0:1, :] x = inp[:, :, 1:, :] pred = self(x) pred = torch.cat([f_0, pred], dim=2) pred = torch.istft(pred.squeeze(0).permute(1, 2, 0), self.window_size, self.hop_size, window=self.window.to(pred.device)) stoi = self.stoi(pred, tar_wav) tar_wav = tar_wav.cpu().numpy() inp_wav = inp_wav.cpu().numpy() pred = pred.detach().cpu().numpy() lsd, _ = LSD(tar_wav, pred) if batch_idx in [3, 5, 7]: sample_path = os.path.join(CONFIG.LOG.sample_path) path = os.path.join(sample_path, 'sample_' + str(batch_idx)) visualize(tar_wav, inp_wav, pred, path) sf.write(os.path.join(path, 'enhanced_output.wav'), pred, samplerate=CONFIG.DATA.sr, subtype='PCM_16') sf.write(os.path.join(path, 'lossy_input.wav'), inp_wav, samplerate=CONFIG.DATA.sr, subtype='PCM_16') sf.write(os.path.join(path, 'target.wav'), tar_wav, samplerate=CONFIG.DATA.sr, subtype='PCM_16') if CONFIG.DATA.sr != 16000: pred = librosa.resample(pred, orig_sr=48000, target_sr=16000) tar_wav = librosa.resample(tar_wav, orig_sr=48000, target_sr=16000, res_type='kaiser_fast') ret = plcmos.run(pred, tar_wav) pesq = self.pesq(torch.tensor(pred), torch.tensor(tar_wav)) metrics = { "Intrusive": ret[0], "Non-intrusive": ret[1], 'LSD': lsd, 'STOI': stoi, 'PESQ': pesq, } self.log_dict(metrics) return metrics def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0): f_0 = batch[:, :, 0:1, :] x = batch[:, :, 1:, :] pred = self(x) pred = torch.cat([f_0, pred], dim=2) pred = torch.istft(pred.squeeze(0).permute(1, 2, 0), self.window_size, self.hop_size, window=self.window.to(pred.device)) return pred def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=CONFIG.TRAIN.patience, factor=CONFIG.TRAIN.factor, verbose=True) scheduler = { 'scheduler': lr_scheduler, 'reduce_on_plateau': True, 'monitor': 'val_loss' } return [optimizer], [scheduler] class OnnxWrapper(pl.LightningModule): def __init__(self, model, *args, **kwargs): super().__init__(*args, **kwargs) self.model = model batch_size = 1 pred_states = torch.zeros((2, 1, 1, model.predictor.lstm_dim)) mlp_states = torch.zeros((model.encoder.depth, 2, 1, batch_size, model.encoder.dim)) mag = torch.zeros((batch_size, 1, model.hop_size, 1)) x = torch.randn(batch_size, model.hop_size + 1, 2) self.sample = (x, mag, pred_states, mlp_states) self.input_names = ['input', 'mag_in_cached_', 'pred_state_in_cached_', 'mlp_state_in_cached_'] self.output_names = ['output', 'mag_out_cached_', 'pred_state_out_cached_', 'mlp_state_out_cached_'] def forward(self, x, prev_mag, predictor_state=None, mlp_state=None): x = x.permute(0, 2, 1).unsqueeze(-1) f_0 = x[:, :, 0:1, :] x = x[:, :, 1:, :] output, prev_mag, predictor_state, mlp_state = self.model.forward_onnx(x, prev_mag, predictor_state, mlp_state) output = torch.cat([f_0, output], dim=2) output = output.squeeze(-1).permute(0, 2, 1) return output, prev_mag, predictor_state, mlp_state