TurkishNews-SpamClassification / pages /1_News_Classification.py
anilguven's picture
Upload 6 files
2fa43e9 verified
raw
history blame
2.78 kB
import streamlit as st
st.set_page_config(page_title="Turkish Text Classification Tasks - via AG", page_icon='📖')
st.header("📖News Classification - TR")
with st.sidebar:
hf_key = st.text_input("HuggingFace Access Key", key="hf_key", type="password")
MODEL_NEW = {
"albert": "anilguven/albert_tr_turkish_news",
"distilbert": "anilguven/distilbert_tr_turkish_news",
"bert": "anilguven/bert_tr_turkish_news",
"xlm-roberta": "anilguven/xlm-roberta_tr_turkish_news",
"electra": "anilguven/electra_tr_turkish_news",
}
MODEL_NEWS = ["albert","distilbert","bert","xlm-roberta","electra"]
# Use a pipeline as a high-level helper
from transformers import pipeline
# Create a mapping from formatted model names to their original identifiers
def format_model_name(model_key):
name_parts = model_key
formatted_name = ''.join(name_parts) # Join them into a single string with title case
return formatted_name
formatted_names_to_identifiers = {
format_model_name(key): key for key in MODEL_NEW.keys()
}
with st.expander("About this app"):
st.write(f"""
1-Choose your model for news classification (Model has 7 label).\n
2-Enter your sample news text.\n
3-And model predict your text's result.
""")
# Debug to ensure names are formatted correctly
#st.write("Formatted Model Names to Identifiers:", formatted_names_to_identifiers)
model_name: str = st.selectbox("Model", options=MODEL_NEWS)
selected_model = MODEL_NEW[model_name]
if not hf_key:
st.info("Please add your HuggingFace Access Key to continue.")
st.stop()
access_token = hf_key
pipe = pipeline("text-classification", model=selected_model, token=access_token)
#from transformers import AutoTokenizer, AutoModelForSequenceClassification
#tokenizer = AutoTokenizer.from_pretrained(selected_model)
#pipe = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=selected_model)
comment = st.text_input("Enter your news text for analysis")#User input
st.text('')
if st.button("Submit for Analysis"):
if not hf_key:
st.info("Please add your HuggingFace Access Key to continue.")
st.stop()
else:
result = pipe(comment)[0]
label=''
if result["label"] == "LABEL_0": label = "Economy"
elif result["label"] == "LABEL_1": label = "Magazine"
elif result["label"] == "LABEL_2": label = "Health"
elif result["label"] == "LABEL_3": label = "Politics"
elif result["label"] == "LABEL_4": label = "Sports"
elif result["label"] == "LABEL_5": label = "Technology"
else: label = "Events"
st.text(label + " comment with " + str(result["score"]) + " accuracy")