Spaces:
Build error
Build error
import torch | |
from typing import Tuple, Callable | |
from diffusers.models.attention_processor import XFormersAttnProcessor, Attention | |
import xformers, xformers.ops | |
from typing import Optional | |
import math | |
import torch.nn.functional as F | |
from diffusers.utils import USE_PEFT_BACKEND | |
from diffusers.utils.import_utils import is_xformers_available | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
xformers_is_available = True | |
else: | |
xformers_is_available = False | |
if hasattr(F, "scaled_dot_product_attention"): | |
torch2_is_available = True | |
else: | |
torch2_is_available = False | |
def init_generator(device: torch.device, fallback: torch.Generator = None): | |
""" | |
Forks the current default random generator given device. | |
""" | |
if device.type == "cpu": | |
return torch.Generator(device="cpu").set_state(torch.get_rng_state()) | |
elif device.type == "cuda": | |
return torch.Generator(device=device).set_state(torch.cuda.get_rng_state()) | |
else: | |
if fallback is None: | |
return init_generator(torch.device("cpu")) | |
else: | |
return fallback | |
def do_nothing(x: torch.Tensor, mode: str = None): | |
return x | |
def mps_gather_workaround(input, dim, index): | |
if input.shape[-1] == 1: | |
return torch.gather( | |
input.unsqueeze(-1), | |
dim - 1 if dim < 0 else dim, | |
index.unsqueeze(-1) | |
).squeeze(-1) | |
else: | |
return torch.gather(input, dim, index) | |
def up_or_downsample(item, cur_w, cur_h, new_w, new_h, method): | |
batch_size = item.shape[0] | |
item = item.reshape(batch_size, cur_h, cur_w, -1) | |
item = item.permute(0, 3, 1, 2) | |
df = cur_h // new_h | |
if method in "max_pool": | |
item = F.max_pool2d(item, kernel_size=df, stride=df, padding=0) | |
elif method in "avg_pool": | |
item = F.avg_pool2d(item, kernel_size=df, stride=df, padding=0) | |
else: | |
item = F.interpolate(item, size=(new_h, new_w), mode=method) | |
item = item.permute(0, 2, 3, 1) | |
item = item.reshape(batch_size, new_h * new_w, -1) | |
return item | |
def compute_merge(x: torch.Tensor, tome_info): | |
original_h, original_w = tome_info["size"] | |
original_tokens = original_h * original_w | |
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1]))) | |
dim = x.shape[-1] | |
if dim == 320: | |
cur_level = "level_1" | |
downsample_factor = tome_info['args']['downsample_factor'] | |
ratio = tome_info['args']['ratio'] | |
elif dim == 640: | |
cur_level = "level_2" | |
downsample_factor = tome_info['args']['downsample_factor_level_2'] | |
ratio = tome_info['args']['ratio_level_2'] | |
else: | |
cur_level = "other" | |
downsample_factor = 1 | |
ratio = 0.0 | |
args = tome_info["args"] | |
cur_h, cur_w = original_h // downsample, original_w // downsample | |
new_h, new_w = cur_h // downsample_factor, cur_w // downsample_factor | |
if tome_info['timestep'] / 1000 > tome_info['args']['timestep_threshold_switch']: | |
merge_method = args["merge_method"] | |
else: | |
merge_method = args["secondary_merge_method"] | |
if cur_level != "other" and tome_info['timestep'] / 1000 > tome_info['args']['timestep_threshold_stop']: | |
if merge_method == "downsample" and downsample_factor > 1: | |
m = lambda x: up_or_downsample(x, cur_w, cur_h, new_w, new_h, args["downsample_method"]) | |
u = lambda x: up_or_downsample(x, new_w, new_h, cur_w, cur_h, args["downsample_method"]) | |
elif merge_method == "similarity" and ratio > 0.0: | |
w = int(math.ceil(original_w / downsample)) | |
h = int(math.ceil(original_h / downsample)) | |
r = int(x.shape[1] * ratio) | |
# Re-init the generator if it hasn't already been initialized or device has changed. | |
if args["generator"] is None: | |
args["generator"] = init_generator(x.device) | |
elif args["generator"].device != x.device: | |
args["generator"] = init_generator(x.device, fallback=args["generator"]) | |
# If the batch size is odd, then it's not possible for prompted and unprompted images to be in the same | |
# batch, which causes artifacts with use_rand, so force it to be off. | |
use_rand = False if x.shape[0] % 2 == 1 else args["use_rand"] | |
m, u = bipartite_soft_matching_random2d(x, w, h, args["sx"], args["sy"], r, | |
no_rand=not use_rand, generator=args["generator"]) | |
else: | |
m, u = (do_nothing, do_nothing) | |
else: | |
m, u = (do_nothing, do_nothing) | |
merge_fn, unmerge_fn = (m, u) | |
return merge_fn, unmerge_fn | |
def bipartite_soft_matching_random2d(metric: torch.Tensor, | |
w: int, | |
h: int, | |
sx: int, | |
sy: int, | |
r: int, | |
no_rand: bool = False, | |
generator: torch.Generator = None) -> Tuple[Callable, Callable]: | |
""" | |
Partitions the tokens into src and dst and merges r tokens from src to dst. | |
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. | |
Args: | |
- metric [B, N, C]: metric to use for similarity | |
- w: image width in tokens | |
- h: image height in tokens | |
- sx: stride in the x dimension for dst, must divide w | |
- sy: stride in the y dimension for dst, must divide h | |
- r: number of tokens to remove (by merging) | |
- no_rand: if true, disable randomness (use top left corner only) | |
- rand_seed: if no_rand is false, and if not None, sets random seed. | |
""" | |
B, N, _ = metric.shape | |
if r <= 0: | |
return do_nothing, do_nothing | |
with torch.no_grad(): | |
hsy, wsx = h // sy, w // sx | |
# For each sy by sx kernel, randomly assign one token to be dst and the rest src | |
if no_rand: | |
rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64) | |
else: | |
rand_idx = torch.randint(sy * sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to( | |
metric.device) | |
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead | |
idx_buffer_view = torch.zeros(hsy, wsx, sy * sx, device=metric.device, dtype=torch.int64) | |
idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype)) | |
idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx) | |
# Image is not divisible by sx or sy so we need to move it into a new buffer | |
if (hsy * sy) < h or (wsx * sx) < w: | |
idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64) | |
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view | |
else: | |
idx_buffer = idx_buffer_view | |
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices | |
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1) | |
# We're finished with these | |
del idx_buffer, idx_buffer_view | |
# rand_idx is currently dst|src, so split them | |
num_dst = hsy * wsx | |
a_idx = rand_idx[:, num_dst:, :] # src | |
b_idx = rand_idx[:, :num_dst, :] # dst | |
def split(x): | |
C = x.shape[-1] | |
src = torch.gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C)) | |
dst = torch.gather(x, dim=1, index=b_idx.expand(B, num_dst, C)) | |
return src, dst | |
# Cosine similarity between A and B | |
metric = metric / metric.norm(dim=-1, keepdim=True) | |
a, b = split(metric) | |
scores = a @ b.transpose(-1, -2) | |
# Can't reduce more than the # tokens in src | |
r = min(a.shape[1], r) | |
# Find the most similar greedily | |
node_max, node_idx = scores.max(dim=-1) | |
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] | |
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens | |
src_idx = edge_idx[..., :r, :] # Merged Tokens | |
dst_idx = torch.gather(node_idx[..., None], dim=-2, index=src_idx) | |
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: | |
src, dst = split(x) | |
n, t1, c = src.shape | |
unm = torch.gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c)) | |
src = torch.gather(src, dim=-2, index=src_idx.expand(n, r, c)) | |
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) | |
return torch.cat([unm, dst], dim=1) | |
def unmerge(x: torch.Tensor) -> torch.Tensor: | |
unm_len = unm_idx.shape[1] | |
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] | |
_, _, c = unm.shape | |
src = torch.gather(dst, dim=-2, index=dst_idx.expand(B, r, c)) | |
# Combine back to the original shape | |
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) | |
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) | |
out.scatter_(dim=-2, | |
index=torch.gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), | |
src=unm) | |
out.scatter_(dim=-2, | |
index=torch.gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), | |
src=src) | |
return out | |
return merge, unmerge | |
class TokenMergeAttentionProcessor: | |
def __init__(self): | |
# priortize torch2's flash attention, if not fall back to xformers then regular attention | |
if torch2_is_available: | |
self.attn_method = "torch2" | |
elif xformers_is_available: | |
self.attn_method = "xformers" | |
else: | |
self.attn_method = "regular" | |
def torch2_attention(self, attn, query, key, value, attention_mask, batch_size): | |
inner_dim=key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
return hidden_states | |
def xformers_attention(self, attn, query, key, value, attention_mask, batch_size): | |
query = attn.head_to_batch_dim(query).contiguous() | |
key = attn.head_to_batch_dim(key).contiguous() | |
value = attn.head_to_batch_dim(value).contiguous() | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size * attn.heads, -1, attention_mask.shape[-1]) | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=attention_mask, scale=attn.scale | |
) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
return hidden_states | |
def regular_attention(self, attn, query, key, value, attention_mask, batch_size): | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size * attn.heads, -1, attention_mask.shape[-1]) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
return hidden_states | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
args = () if USE_PEFT_BACKEND else (scale,) | |
if self._tome_info['args']['merge_tokens'] == "all": | |
merge_fn, unmerge_fn = compute_merge(hidden_states, self._tome_info) | |
hidden_states = merge_fn(hidden_states) | |
query = attn.to_q(hidden_states, *args) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if self._tome_info['args']['merge_tokens'] == "keys/values": | |
merge_fn, _ = compute_merge(encoder_hidden_states, self._tome_info) | |
encoder_hidden_states = merge_fn(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states, *args) | |
value = attn.to_v(encoder_hidden_states, *args) | |
if self.attn_method == "torch2": | |
hidden_states = self.torch2_attention(attn, query, key, value, attention_mask, batch_size) | |
elif self.attn_method == "xformers": | |
hidden_states = self.xformers_attention(attn, query, key, value, attention_mask, batch_size) | |
else: | |
hidden_states = self.regular_attention(attn, query, key, value, attention_mask, batch_size) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, *args) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if self._tome_info['args']['merge_tokens'] == "all": | |
hidden_states = unmerge_fn(hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |