Spaces:
Build error
Build error
import torch | |
from merge import TokenMergeAttentionProcessor | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor, AttnProcessor | |
import torch.nn.functional as F | |
if is_xformers_available(): | |
xformers_is_available = True | |
else: | |
xformers_is_available = False | |
if hasattr(F, "scaled_dot_product_attention"): | |
torch2_is_available = True | |
else: | |
torch2_is_available = False | |
def hook_tome_model(model: torch.nn.Module): | |
""" Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """ | |
def hook(module, args): | |
module._tome_info["size"] = (args[0].shape[2], args[0].shape[3]) | |
module._tome_info["timestep"] = args[1].item() | |
return None | |
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook)) | |
def remove_patch(pipe: torch.nn.Module): | |
""" Removes a patch from a ToMe Diffusion module if it was already patched. """ | |
if hasattr(pipe.unet, "_tome_info"): | |
del pipe.unet._tome_info | |
for n,m in pipe.unet.named_modules(): | |
if hasattr(m, "processor"): | |
m.processor = AttnProcessor2_0() | |
def patch_attention_proc(unet, token_merge_args={}): | |
unet._tome_info = { | |
"size": None, | |
"timestep": None, | |
"hooks": [], | |
"args": { | |
"ratio": token_merge_args.get("ratio", 0.5), # ratio of tokens to merge | |
"sx": token_merge_args.get("sx", 2), # stride x for sim calculation | |
"sy": token_merge_args.get("sy", 2), # stride y for sim calculation | |
"use_rand": token_merge_args.get("use_rand", True), | |
"generator": None, | |
"merge_tokens": token_merge_args.get("merge_tokens", "keys/values"), # ["all", "keys/values"] | |
"merge_method": token_merge_args.get("merge_method", "downsample"), # ["none","similarity", "downsample"] | |
"downsample_method": token_merge_args.get("downsample_method", "nearest-exact"), | |
# native torch interpolation methods ["nearest", "linear", "bilinear", "bicubic", "nearest-exact"] | |
"downsample_factor": token_merge_args.get("downsample_factor", 2), # amount to downsample by | |
"timestep_threshold_switch": token_merge_args.get("timestep_threshold_switch", 0.2), | |
# timestep to switch to secondary method, 0.2 means 20% steps remaining | |
"timestep_threshold_stop": token_merge_args.get("timestep_threshold_stop", 0.0), | |
# timestep to stop merging, 0.0 means stop at 0 steps remaining | |
"secondary_merge_method": token_merge_args.get("secondary_merge_method", "similarity"), | |
# ["none", "similarity", "downsample"] | |
"downsample_factor_level_2": token_merge_args.get("downsample_factor_level_2", 1), # amount to downsample by at the 2nd down block of unet | |
"ratio_level_2": token_merge_args.get("ratio_level_2", 0.5), # ratio of tokens to merge at the 2nd down block of unet | |
} | |
} | |
hook_tome_model(unet) | |
attn_modules = [module for name, module in unet.named_modules() if module.__class__.__name__ == 'BasicTransformerBlock'] | |
for i, module in enumerate(attn_modules): | |
module.attn1.processor = TokenMergeAttentionProcessor() | |
module.attn1.processor._tome_info = unet._tome_info | |
def remove_patch(pipe: torch.nn.Module): | |
""" Removes a patch from a ToMe Diffusion module if it was already patched. """ | |
# this will remove our custom class | |
if torch2_is_available: | |
for n,m in pipe.unet.named_modules(): | |
if hasattr(m, "processor"): | |
m.processor = AttnProcessor2_0() | |
elif xformers_is_available: | |
pipe.enable_xformers_memory_efficient_attention() | |
else: | |
for n,m in pipe.unet.named_modules(): | |
if hasattr(m, "processor"): | |
m.processor = AttnProcessor() | |