ToDo / utils.py
aningineer's picture
Upload folder using huggingface_hub
26cfd4b verified
import torch
from merge import TokenMergeAttentionProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor, AttnProcessor
import torch.nn.functional as F
if is_xformers_available():
xformers_is_available = True
else:
xformers_is_available = False
if hasattr(F, "scaled_dot_product_attention"):
torch2_is_available = True
else:
torch2_is_available = False
def hook_tome_model(model: torch.nn.Module):
""" Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """
def hook(module, args):
module._tome_info["size"] = (args[0].shape[2], args[0].shape[3])
module._tome_info["timestep"] = args[1].item()
return None
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))
def remove_patch(pipe: torch.nn.Module):
""" Removes a patch from a ToMe Diffusion module if it was already patched. """
if hasattr(pipe.unet, "_tome_info"):
del pipe.unet._tome_info
for n,m in pipe.unet.named_modules():
if hasattr(m, "processor"):
m.processor = AttnProcessor2_0()
def patch_attention_proc(unet, token_merge_args={}):
unet._tome_info = {
"size": None,
"timestep": None,
"hooks": [],
"args": {
"ratio": token_merge_args.get("ratio", 0.5), # ratio of tokens to merge
"sx": token_merge_args.get("sx", 2), # stride x for sim calculation
"sy": token_merge_args.get("sy", 2), # stride y for sim calculation
"use_rand": token_merge_args.get("use_rand", True),
"generator": None,
"merge_tokens": token_merge_args.get("merge_tokens", "keys/values"), # ["all", "keys/values"]
"merge_method": token_merge_args.get("merge_method", "downsample"), # ["none","similarity", "downsample"]
"downsample_method": token_merge_args.get("downsample_method", "nearest-exact"),
# native torch interpolation methods ["nearest", "linear", "bilinear", "bicubic", "nearest-exact"]
"downsample_factor": token_merge_args.get("downsample_factor", 2), # amount to downsample by
"timestep_threshold_switch": token_merge_args.get("timestep_threshold_switch", 0.2),
# timestep to switch to secondary method, 0.2 means 20% steps remaining
"timestep_threshold_stop": token_merge_args.get("timestep_threshold_stop", 0.0),
# timestep to stop merging, 0.0 means stop at 0 steps remaining
"secondary_merge_method": token_merge_args.get("secondary_merge_method", "similarity"),
# ["none", "similarity", "downsample"]
"downsample_factor_level_2": token_merge_args.get("downsample_factor_level_2", 1), # amount to downsample by at the 2nd down block of unet
"ratio_level_2": token_merge_args.get("ratio_level_2", 0.5), # ratio of tokens to merge at the 2nd down block of unet
}
}
hook_tome_model(unet)
attn_modules = [module for name, module in unet.named_modules() if module.__class__.__name__ == 'BasicTransformerBlock']
for i, module in enumerate(attn_modules):
module.attn1.processor = TokenMergeAttentionProcessor()
module.attn1.processor._tome_info = unet._tome_info
def remove_patch(pipe: torch.nn.Module):
""" Removes a patch from a ToMe Diffusion module if it was already patched. """
# this will remove our custom class
if torch2_is_available:
for n,m in pipe.unet.named_modules():
if hasattr(m, "processor"):
m.processor = AttnProcessor2_0()
elif xformers_is_available:
pipe.enable_xformers_memory_efficient_attention()
else:
for n,m in pipe.unet.named_modules():
if hasattr(m, "processor"):
m.processor = AttnProcessor()