import datasets import transformers import torch import gradio as gr from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset("beans") # This should be the same as the first line of Python code in this Colab notebook feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") model = model.eval() # set to eval mode for predictions labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences # gradio app interface = gr.Interface(fn = classify, inputs = "image", outputs = "label", title = "Leaf Health Classifier", examples =["beans1.jpg", "beans2.jpg", "beans3.jpg"], description = "A fine tuned ViT based image classfier which returns the health of a bean leaf") interface.launch(debug=True)