Spaces:
Running
Running
File size: 6,811 Bytes
13580fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
import torch.nn.functional as F
from torch import nn
class ResBlocks(nn.Module):
def __init__(self, num_blocks, dim, norm, activation, pad_type):
super(ResBlocks, self).__init__()
self.model = []
for i in range(num_blocks):
self.model += [ResBlock(dim,
norm=norm,
activation=activation,
pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x)
class ResBlock(nn.Module):
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
super(ResBlock, self).__init__()
model = []
model += [Conv2dBlock(dim, dim, 3, 1, 1,
norm=norm,
activation=activation,
pad_type=pad_type)]
model += [Conv2dBlock(dim, dim, 3, 1, 1,
norm=norm,
activation='none',
pad_type=pad_type)]
self.model = nn.Sequential(*model)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
class ActFirstResBlock(nn.Module):
def __init__(self, fin, fout, fhid=None,
activation='lrelu', norm='none'):
super().__init__()
self.learned_shortcut = (fin != fout)
self.fin = fin
self.fout = fout
self.fhid = min(fin, fout) if fhid is None else fhid
self.conv_0 = Conv2dBlock(self.fin, self.fhid, 3, 1,
padding=1, pad_type='reflect', norm=norm,
activation=activation, activation_first=True)
self.conv_1 = Conv2dBlock(self.fhid, self.fout, 3, 1,
padding=1, pad_type='reflect', norm=norm,
activation=activation, activation_first=True)
if self.learned_shortcut:
self.conv_s = Conv2dBlock(self.fin, self.fout, 1, 1,
activation='none', use_bias=False)
def forward(self, x):
x_s = self.conv_s(x) if self.learned_shortcut else x
dx = self.conv_0(x)
dx = self.conv_1(dx)
out = x_s + dx
return out
class LinearBlock(nn.Module):
def __init__(self, in_dim, out_dim, norm='none', activation='relu'):
super(LinearBlock, self).__init__()
use_bias = True
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
# initialize normalization
norm_dim = out_dim
if norm == 'bn':
self.norm = nn.BatchNorm1d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm1d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=False)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=False)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
def forward(self, x):
out = self.fc(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
class Conv2dBlock(nn.Module):
def __init__(self, in_dim, out_dim, ks, st, padding=0,
norm='none', activation='relu', pad_type='zero',
use_bias=True, activation_first=False):
super(Conv2dBlock, self).__init__()
self.use_bias = use_bias
self.activation_first = activation_first
# initialize padding
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = out_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=False)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=False)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
self.conv = nn.Conv2d(in_dim, out_dim, ks, st, bias=self.use_bias)
def forward(self, x):
if self.activation_first:
if self.activation:
x = self.activation(x)
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
else:
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1):
super(AdaptiveInstanceNorm2d, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.weight = None
self.bias = None
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
def forward(self, x):
assert self.weight is not None and \
self.bias is not None, "Please assign AdaIN weight first"
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(
x_reshaped, running_mean, running_var, self.weight, self.bias,
True, self.momentum, self.eps)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
|