Spaces:
Running
Running
File size: 26,890 Bytes
9acea67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import argparse
from collections import namedtuple
import numpy as np
import torch
import cv2,os
import torch
import torch.nn.functional as F
from collections import defaultdict
from sklearn.cluster import DBSCAN
"""
taken from https://github.com/githubharald/WordDetectorNN
Download the models from https://www.dropbox.com/s/mqhco2q67ovpfjq/model.zip?dl=1 and pass the path to word_segment(.) as argument.
"""
from typing import Type, Any, Callable, Union, List, Optional
import torch.nn as nn
from torch import Tensor
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
stride: int = 1, dilate: bool = False) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
out1 = self.relu(x)
x = self.maxpool(out1)
out2 = self.layer1(x)
out3 = self.layer2(out2)
out4 = self.layer3(out3)
out5 = self.layer4(out4)
return out5, out4, out3, out2, out1
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _resnet(
arch: str,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
pretrained: bool,
progress: bool,
**kwargs: Any
) -> ResNet:
model = ResNet(block, layers, **kwargs)
return model
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
**kwargs)
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
**kwargs)
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
def compute_iou(ra, rb):
"""intersection over union of two axis aligned rectangles ra and rb"""
if ra.xmax < rb.xmin or rb.xmax < ra.xmin or ra.ymax < rb.ymin or rb.ymax < ra.ymin:
return 0
l = max(ra.xmin, rb.xmin)
r = min(ra.xmax, rb.xmax)
t = max(ra.ymin, rb.ymin)
b = min(ra.ymax, rb.ymax)
intersection = (r - l) * (b - t)
union = ra.area() + rb.area() - intersection
iou = intersection / union
return iou
def compute_dist_mat(aabbs):
"""Jaccard distance matrix of all pairs of aabbs"""
num_aabbs = len(aabbs)
dists = np.zeros((num_aabbs, num_aabbs))
for i in range(num_aabbs):
for j in range(num_aabbs):
if j > i:
break
dists[i, j] = dists[j, i] = 1 - compute_iou(aabbs[i], aabbs[j])
return dists
def cluster_aabbs(aabbs):
"""cluster aabbs using DBSCAN and the Jaccard distance between bounding boxes"""
if len(aabbs) < 2:
return aabbs
dists = compute_dist_mat(aabbs)
clustering = DBSCAN(eps=0.7, min_samples=3, metric='precomputed').fit(dists)
clusters = defaultdict(list)
for i, c in enumerate(clustering.labels_):
if c == -1:
continue
clusters[c].append(aabbs[i])
res_aabbs = []
for curr_cluster in clusters.values():
xmin = np.median([aabb.xmin for aabb in curr_cluster])
xmax = np.median([aabb.xmax for aabb in curr_cluster])
ymin = np.median([aabb.ymin for aabb in curr_cluster])
ymax = np.median([aabb.ymax for aabb in curr_cluster])
res_aabbs.append(AABB(xmin, xmax, ymin, ymax))
return res_aabbs
class AABB:
"""axis aligned bounding box"""
def __init__(self, xmin, xmax, ymin, ymax):
self.xmin = xmin
self.xmax = xmax
self.ymin = ymin
self.ymax = ymax
def scale(self, fx, fy):
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
new.xmin = fx * new.xmin
new.xmax = fx * new.xmax
new.ymin = fy * new.ymin
new.ymax = fy * new.ymax
return new
def scale_around_center(self, fx, fy):
cx = (self.xmin + self.xmax) / 2
cy = (self.ymin + self.ymax) / 2
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
new.xmin = cx - fx * (cx - self.xmin)
new.xmax = cx + fx * (self.xmax - cx)
new.ymin = cy - fy * (cy - self.ymin)
new.ymax = cy + fy * (self.ymax - cy)
return new
def translate(self, tx, ty):
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
new.xmin = new.xmin + tx
new.xmax = new.xmax + tx
new.ymin = new.ymin + ty
new.ymax = new.ymax + ty
return new
def as_type(self, t):
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
new.xmin = t(new.xmin)
new.xmax = t(new.xmax)
new.ymin = t(new.ymin)
new.ymax = t(new.ymax)
return new
def enlarge_to_int_grid(self):
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
new.xmin = np.floor(new.xmin)
new.xmax = np.ceil(new.xmax)
new.ymin = np.floor(new.ymin)
new.ymax = np.ceil(new.ymax)
return new
def clip(self, clip_aabb):
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
new.xmin = min(max(new.xmin, clip_aabb.xmin), clip_aabb.xmax)
new.xmax = max(min(new.xmax, clip_aabb.xmax), clip_aabb.xmin)
new.ymin = min(max(new.ymin, clip_aabb.ymin), clip_aabb.ymax)
new.ymax = max(min(new.ymax, clip_aabb.ymax), clip_aabb.ymin)
return new
def area(self):
return (self.xmax - self.xmin) * (self.ymax - self.ymin)
def __str__(self):
return f'AABB(xmin={self.xmin},xmax={self.xmax},ymin={self.ymin},ymax={self.ymax})'
def __repr__(self):
return str(self)
class MapOrdering:
"""order of the maps encoding the aabbs around the words"""
SEG_WORD = 0
SEG_SURROUNDING = 1
SEG_BACKGROUND = 2
GEO_TOP = 3
GEO_BOTTOM = 4
GEO_LEFT = 5
GEO_RIGHT = 6
NUM_MAPS = 7
def encode(shape, gt, f=1.0):
gt_map = np.zeros((MapOrdering.NUM_MAPS,) + shape)
for aabb in gt:
aabb = aabb.scale(f, f)
# segmentation map
aabb_clip = AABB(0, shape[0] - 1, 0, shape[1] - 1)
aabb_word = aabb.scale_around_center(0.5, 0.5).as_type(int).clip(aabb_clip)
aabb_sur = aabb.as_type(int).clip(aabb_clip)
gt_map[MapOrdering.SEG_SURROUNDING, aabb_sur.ymin:aabb_sur.ymax + 1, aabb_sur.xmin:aabb_sur.xmax + 1] = 1
gt_map[MapOrdering.SEG_SURROUNDING, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 0
gt_map[MapOrdering.SEG_WORD, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 1
# geometry map TODO vectorize
for x in range(aabb_word.xmin, aabb_word.xmax + 1):
for y in range(aabb_word.ymin, aabb_word.ymax + 1):
gt_map[MapOrdering.GEO_TOP, y, x] = y - aabb.ymin
gt_map[MapOrdering.GEO_BOTTOM, y, x] = aabb.ymax - y
gt_map[MapOrdering.GEO_LEFT, y, x] = x - aabb.xmin
gt_map[MapOrdering.GEO_RIGHT, y, x] = aabb.xmax - x
gt_map[MapOrdering.SEG_BACKGROUND] = np.clip(1 - gt_map[MapOrdering.SEG_WORD] - gt_map[MapOrdering.SEG_SURROUNDING],
0, 1)
return gt_map
def subsample(idx, max_num):
"""restrict fg indices to a maximum number"""
f = len(idx[0]) / max_num
if f > 1:
a = np.asarray([idx[0][int(j * f)] for j in range(max_num)], np.int64)
b = np.asarray([idx[1][int(j * f)] for j in range(max_num)], np.int64)
idx = (a, b)
return idx
def fg_by_threshold(thres, max_num=None):
"""all pixels above threshold are fg pixels, optionally limited to a maximum number"""
def func(seg_map):
idx = np.where(seg_map > thres)
if max_num is not None:
idx = subsample(idx, max_num)
return idx
return func
def fg_by_cc(thres, max_num):
"""take a maximum number of pixels per connected component, but at least 3 (->DBSCAN minPts)"""
def func(seg_map):
seg_mask = (seg_map > thres).astype(np.uint8)
num_labels, label_img = cv2.connectedComponents(seg_mask, connectivity=4)
max_num_per_cc = max(max_num // (num_labels + 1), 3) # at least 3 because of DBSCAN clustering
all_idx = [np.empty(0, np.int64), np.empty(0, np.int64)]
for curr_label in range(1, num_labels):
curr_idx = np.where(label_img == curr_label)
curr_idx = subsample(curr_idx, max_num_per_cc)
all_idx[0] = np.append(all_idx[0], curr_idx[0])
all_idx[1] = np.append(all_idx[1], curr_idx[1])
return tuple(all_idx)
return func
def decode(pred_map, comp_fg=fg_by_threshold(0.5), f=1):
idx = comp_fg(pred_map[MapOrdering.SEG_WORD])
pred_map_masked = pred_map[..., idx[0], idx[1]]
aabbs = []
for yc, xc, pred in zip(idx[0], idx[1], pred_map_masked.T):
t = pred[MapOrdering.GEO_TOP]
b = pred[MapOrdering.GEO_BOTTOM]
l = pred[MapOrdering.GEO_LEFT]
r = pred[MapOrdering.GEO_RIGHT]
aabb = AABB(xc - l, xc + r, yc - t, yc + b)
aabbs.append(aabb.scale(f, f))
return aabbs
def main():
import matplotlib.pyplot as plt
aabbs_in = [AABB(10, 30, 30, 60)]
encoded = encode((50, 50), aabbs_in, f=0.5)
aabbs_out = decode(encoded, f=2)
print(aabbs_out[0])
plt.subplot(151)
plt.imshow(encoded[MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1].transpose(1, 2, 0))
plt.subplot(152)
plt.imshow(encoded[MapOrdering.GEO_TOP])
plt.subplot(153)
plt.imshow(encoded[MapOrdering.GEO_BOTTOM])
plt.subplot(154)
plt.imshow(encoded[MapOrdering.GEO_LEFT])
plt.subplot(155)
plt.imshow(encoded[MapOrdering.GEO_RIGHT])
plt.show()
def compute_scale_down(input_size, output_size):
"""compute scale down factor of neural network, given input and output size"""
return output_size[0] / input_size[0]
def prob_true(p):
"""return True with probability p"""
return np.random.random() < p
class UpscaleAndConcatLayer(torch.nn.Module):
"""
take small map with cx channels
upscale to size of large map (s*s)
concat large map with cy channels and upscaled small map
apply conv and output map with cz channels
"""
def __init__(self, cx, cy, cz):
super(UpscaleAndConcatLayer, self).__init__()
self.conv = torch.nn.Conv2d(cx + cy, cz, 3, padding=1)
def forward(self, x, y, s):
x = F.interpolate(x, s)
z = torch.cat((x, y), 1)
z = F.relu(self.conv(z))
return z
class WordDetectorNet(torch.nn.Module):
# fixed sizes for training
input_size = (448, 448)
output_size = (224, 224)
scale_down = compute_scale_down(input_size, output_size)
def __init__(self):
super(WordDetectorNet, self).__init__()
self.backbone = resnet18()
self.up1 = UpscaleAndConcatLayer(512, 256, 256) # input//16
self.up2 = UpscaleAndConcatLayer(256, 128, 128) # input//8
self.up3 = UpscaleAndConcatLayer(128, 64, 64) # input//4
self.up4 = UpscaleAndConcatLayer(64, 64, 32) # input//2
self.conv1 = torch.nn.Conv2d(32, MapOrdering.NUM_MAPS, 3, 1, padding=1)
@staticmethod
def scale_shape(s, f):
assert s[0] % f == 0 and s[1] % f == 0
return s[0] // f, s[1] // f
def output_activation(self, x, apply_softmax):
if apply_softmax:
seg = torch.softmax(x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1], dim=1)
else:
seg = x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1]
geo = torch.sigmoid(x[:, MapOrdering.GEO_TOP:]) * self.input_size[0]
y = torch.cat([seg, geo], dim=1)
return y
def forward(self, x, apply_softmax=False):
# x: BxCxHxW
# eval backbone with 448px: bb1: 224px, bb2: 112px, bb3: 56px, bb4: 28px, bb5: 14px
s = x.shape[2:]
bb5, bb4, bb3, bb2, bb1 = self.backbone(x)
x = self.up1(bb5, bb4, self.scale_shape(s, 16))
x = self.up2(x, bb3, self.scale_shape(s, 8))
x = self.up3(x, bb2, self.scale_shape(s, 4))
x = self.up4(x, bb1, self.scale_shape(s, 2))
x = self.conv1(x)
return self.output_activation(x, apply_softmax)
def ceil32(val):
if val % 32 == 0:
return val
val = (val // 32 + 1) * 32
return val
def word_segment(path, output_folder, model_path):
os.makedirs(output_folder, exist_ok = True)
max_side_len = 5000
thres = 0.5
max_aabbs = 1000
orig = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
net = WordDetectorNet()
net.load_state_dict(torch.load(model_path, map_location='cuda'))
net.eval()
net.cuda()
f = min(max_side_len / orig.shape[0], max_side_len / orig.shape[1])
if f < 1:
orig = cv2.resize(orig, dsize=None, fx=f, fy=f)
img = np.ones((ceil32(orig.shape[0]), ceil32(orig.shape[1])), np.uint8) * 255
img[:orig.shape[0], :orig.shape[1]] = orig
img = (img / 255 - 0.5).astype(np.float32)
imgs = img[None, None, ...]
imgs = torch.from_numpy(imgs).cuda()
with torch.no_grad():
y = net(imgs, apply_softmax=True)
y_np = y.to('cpu').numpy()
scale_up = 1 / compute_scale_down(WordDetectorNet.input_size, WordDetectorNet.output_size)
img_np = imgs[0, 0].to('cpu').numpy()
pred_map = y_np[0]
aabbs = decode(pred_map, comp_fg=fg_by_cc(thres, max_aabbs), f=scale_up)
h, w = img_np.shape
aabbs = [aabb.clip(AABB(0, w - 1, 0, h - 1)) for aabb in aabbs] # bounding box must be inside img
clustered_aabbs = cluster_aabbs(aabbs)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
for idx,bb in enumerate(clustered_aabbs):
bb1 = bb
im_i = (img_np[int(bb1.ymin):int(bb1.ymax),int(bb1.xmin):int(bb1.xmax)]+0.5)*255
cv2.imwrite(f'{output_folder}/im_{idx}.png',im_i)
|