HWT / app.py
ankankbhunia's picture
Update app.py
2cf0067 verified
raw
history blame
4.52 kB
import gradio as gr
from PIL import Image
import numpy as np
from io import BytesIO
import glob
import os
import time
from data.dataset import load_itw_samples, crop_
import torch
import cv2
import os
import numpy as np
from models.model import TRGAN
from params import *
from torch import nn
from data.dataset import get_transform
import pickle
from PIL import Image
import tqdm
import shutil
from datetime import datetime
wellcomingMessage = """
<h1>πŸ’₯ Handwriting Synthesis - Generate text in anyone's handwriting πŸ’₯ </h1>
<p>πŸš€ This app is a demo for the ICCV'21 paper "Handwriting Transformer". Visit our github paper for more information - <a href="https://github.com/ankanbhunia/Handwriting-Transformers" target="_blank">https://github.com/ankanbhunia/Handwriting-Transformers</a></p>
<p>πŸš€ You can either choose from an existing style gallery or upload your own handwriting. If you choose to upload, please ensure that you provide a sufficient number of (~15) cropped handwritten word images for the model to work effectively. The demo is made available for research purposes, and any other use is not intended.</p>
"""
model_path = 'files/iam_model.pth'
batch_size = 1
print ('(1) Loading model...')
model = TRGAN(batch_size = batch_size)
model.netG.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')) )
print (model_path+' : Model loaded Successfully')
model.eval()
# Define a function to generate an image based on text and images
def generate_image(text,folder, _ch3, images):
# Your image generation logic goes here (replace with your actual implementation)
# For demonstration purposes, we'll just concatenate the uploaded images horizontally.
# try:
text_copy = text
if images:
style_log = images
style_inputs, width_length = load_itw_samples(images)
elif folder:
style_log = folder
style_inputs, width_length = load_itw_samples(folder)
else:
return None
# Load images
text = text.replace("\n", "").replace("\t", "")
text_encode = [j.encode() for j in text.split(' ')]
eval_text_encode, eval_len_text = model.netconverter.encode(text_encode)
eval_text_encode = eval_text_encode.to(DEVICE).repeat(batch_size, 1, 1)
input_styles, page_val = model._generate_page(style_inputs.to(DEVICE).clone(), width_length, eval_text_encode, eval_len_text, no_concat = True)
page_val = crop_(page_val[0]*255)
input_styles = crop_(input_styles[0]*255)
max_width = max(page_val.shape[1],input_styles.shape[1])
if page_val.shape[1]!=max_width:
page_val = np.concatenate([page_val, np.ones((page_val.shape[0],max_width-page_val.shape[1]))*255], 1)
else:
input_styles = np.concatenate([input_styles, np.ones((input_styles.shape[0],max_width-input_styles.shape[1]))*255], 1)
upper_pad = np.ones((45,input_styles.shape[1]))*255
input_styles = np.concatenate([upper_pad, input_styles], 0)
page_val = np.concatenate([upper_pad, page_val], 0)
page_val = Image.fromarray(page_val).convert('RGB')
input_styles = Image.fromarray(input_styles).convert('RGB')
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
print (f'{formatted_datetime}: input_string - {text_copy}, style_input - {style_log}')
# except:
print ('ERROR! Try again.')
return input_styles, page_val
# Define Gradio Interface
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(value = "In the quiet hum of everyday life, the dance of existence unfolds. Time, an ever-flowing river, carries the stories of triumph and heartache. Each fleeting moment is a brushstroke on the canvas of our memories.",label = "Input text"),
gr.Dropdown(value = "files/example_data/style-30", choices=glob.glob('files/example_data/*'), label="Choose from provided writer styles"),
gr.Markdown("### OR"),
gr.File(label="Upload multiple word images", file_count="multiple")
],
outputs=[#gr.Markdown("## Output"),
gr.Image(type="pil", label="Style Image"),
gr.Image(type="pil", label="Generated Image")],
description = wellcomingMessage,
thumbnail = "Handwriting Synthesis - Mimic anyone's handwriting!"
)
# Launch the Gradio Interface
iface.launch(debug=True, share=True)