Spaces:
Running
Running
import numpy as np | |
import os | |
import sys | |
import ntpath | |
import time | |
from . import util, html | |
from subprocess import Popen, PIPE | |
from scipy.misc import imresize | |
if sys.version_info[0] == 2: | |
VisdomExceptionBase = Exception | |
else: | |
VisdomExceptionBase = ConnectionError | |
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): | |
"""Save images to the disk. | |
Parameters: | |
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) | |
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs | |
image_path (str) -- the string is used to create image paths | |
aspect_ratio (float) -- the aspect ratio of saved images | |
width (int) -- the images will be resized to width x width | |
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. | |
""" | |
image_dir = webpage.get_image_dir() | |
short_path = ntpath.basename(image_path[0]) | |
name = os.path.splitext(short_path)[0] | |
webpage.add_header(name) | |
ims, txts, links = [], [], [] | |
for label, im_data in visuals.items(): | |
im = util.tensor2im(im_data) | |
image_name = '%s_%s.png' % (name, label) | |
save_path = os.path.join(image_dir, image_name) | |
h, w, _ = im.shape | |
if aspect_ratio > 1.0: | |
im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic') | |
if aspect_ratio < 1.0: | |
im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic') | |
util.save_image(im, save_path) | |
ims.append(image_name) | |
txts.append(label) | |
links.append(image_name) | |
webpage.add_images(ims, txts, links, width=width) | |
class Visualizer(): | |
"""This class includes several functions that can display/save images and print/save logging information. | |
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. | |
""" | |
def __init__(self, opt): | |
"""Initialize the Visualizer class | |
Parameters: | |
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions | |
Step 1: Cache the training/test options | |
Step 2: connect to a visdom server | |
Step 3: create an HTML object for saveing HTML filters | |
Step 4: create a logging file to store training losses | |
""" | |
self.opt = opt # cache the option | |
self.display_id = opt.display_id | |
self.use_html = opt.isTrain and not opt.no_html | |
self.win_size = opt.display_winsize | |
self.name = opt.name | |
self.port = opt.display_port | |
self.saved = False | |
if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server> | |
import visdom | |
self.ncols = opt.display_ncols | |
self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) | |
if not self.vis.check_connection(): | |
self.create_visdom_connections() | |
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/ | |
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') | |
self.img_dir = os.path.join(self.web_dir, 'images') | |
print('create web directory %s...' % self.web_dir) | |
util.mkdirs([self.web_dir, self.img_dir]) | |
# create a logging file to store training losses | |
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') | |
with open(self.log_name, "a") as log_file: | |
now = time.strftime("%c") | |
log_file.write('================ Training Loss (%s) ================\n' % now) | |
def reset(self): | |
"""Reset the self.saved status""" | |
self.saved = False | |
def create_visdom_connections(self): | |
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ | |
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port | |
print('\n\nCould not connect to Visdom server. \n Trying to start a server....') | |
print('Command: %s' % cmd) | |
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) | |
def display_current_results(self, visuals, epoch, save_result): | |
"""Display current results on visdom; save current results to an HTML file. | |
Parameters: | |
visuals (OrderedDict) - - dictionary of images to display or save | |
epoch (int) - - the current epoch | |
save_result (bool) - - if save the current results to an HTML file | |
""" | |
if self.display_id > 0: # show images in the browser using visdom | |
ncols = self.ncols | |
if ncols > 0: # show all the images in one visdom panel | |
ncols = min(ncols, len(visuals)) | |
h, w = next(iter(visuals.values())).shape[:2] | |
table_css = """<style> | |
table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center} | |
table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black} | |
</style>""" % (w, h) # create a table css | |
# create a table of images. | |
title = self.name | |
label_html = '' | |
label_html_row = '' | |
images = [] | |
idx = 0 | |
for label, image in visuals.items(): | |
image_numpy = util.tensor2im(image) | |
label_html_row += '<td>%s</td>' % label | |
images.append(image_numpy.transpose([2, 0, 1])) | |
idx += 1 | |
if idx % ncols == 0: | |
label_html += '<tr>%s</tr>' % label_html_row | |
label_html_row = '' | |
white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 | |
while idx % ncols != 0: | |
images.append(white_image) | |
label_html_row += '<td></td>' | |
idx += 1 | |
if label_html_row != '': | |
label_html += '<tr>%s</tr>' % label_html_row | |
try: | |
self.vis.images(images, nrow=ncols, win=self.display_id + 1, | |
padding=2, opts=dict(title=title + ' images')) | |
label_html = '<table>%s</table>' % label_html | |
self.vis.text(table_css + label_html, win=self.display_id + 2, | |
opts=dict(title=title + ' labels')) | |
except VisdomExceptionBase: | |
self.create_visdom_connections() | |
else: # show each image in a separate visdom panel; | |
idx = 1 | |
try: | |
for label, image in visuals.items(): | |
image_numpy = util.tensor2im(image) | |
self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), | |
win=self.display_id + idx) | |
idx += 1 | |
except VisdomExceptionBase: | |
self.create_visdom_connections() | |
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. | |
self.saved = True | |
# save images to the disk | |
for label, image in visuals.items(): | |
image_numpy = util.tensor2im(image) | |
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) | |
util.save_image(image_numpy, img_path) | |
# update website | |
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1) | |
for n in range(epoch, 0, -1): | |
webpage.add_header('epoch [%d]' % n) | |
ims, txts, links = [], [], [] | |
for label, image_numpy in visuals.items(): | |
image_numpy = util.tensor2im(image) | |
img_path = 'epoch%.3d_%s.png' % (n, label) | |
ims.append(img_path) | |
txts.append(label) | |
links.append(img_path) | |
webpage.add_images(ims, txts, links, width=self.win_size) | |
webpage.save() | |
def plot_current_losses(self, epoch, counter_ratio, losses): | |
"""display the current losses on visdom display: dictionary of error labels and values | |
Parameters: | |
epoch (int) -- current epoch | |
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 | |
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | |
""" | |
if not hasattr(self, 'plot_data'): | |
self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} | |
self.plot_data['X'].append(epoch + counter_ratio) | |
self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) | |
try: | |
self.vis.line( | |
X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), | |
Y=np.array(self.plot_data['Y']), | |
opts={ | |
'title': self.name + ' loss over time', | |
'legend': self.plot_data['legend'], | |
'xlabel': 'epoch', | |
'ylabel': 'loss'}, | |
win=self.display_id) | |
except VisdomExceptionBase: | |
self.create_visdom_connections() | |
# losses: same format as |losses| of plot_current_losses | |
def print_current_losses(self, epoch, iters, losses, t_comp, t_data): | |
"""print current losses on console; also save the losses to the disk | |
Parameters: | |
epoch (int) -- current epoch | |
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) | |
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | |
t_comp (float) -- computational time per data point (normalized by batch_size) | |
t_data (float) -- data loading time per data point (normalized by batch_size) | |
""" | |
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) | |
for k, v in losses.items(): | |
message += '%s: %.3f ' % (k, v) | |
print(message) # print the message | |
with open(self.log_name, "a") as log_file: | |
log_file.write('%s\n' % message) # save the message | |