Spaces:
Runtime error
Runtime error
ankanxopencv
commited on
Commit
•
fb26b5c
1
Parent(s):
0816a52
Upload 13 files
Browse files- .gitattributes +3 -0
- app.py +127 -0
- coco.names +80 -0
- frozen_inference_graph.pb +3 -0
- mbnet.py +80 -0
- object_detection_classes_coco.txt +90 -0
- requirements.txt +3 -0
- sample/dog.jpg +0 -0
- sample/person.mp4 +3 -0
- sample/video_1.mp4 +3 -0
- ssd_mobilenet_v2_coco_2018_03_29.pbtxt.txt +0 -0
- yolov3.cfg +789 -0
- yolov3.py +134 -0
- yolov3.weights +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
sample/person.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
sample/video_1.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
yolov3.weights filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr # type: ignore
|
4 |
+
from mbnet import load_model, detect_objects, get_box_dimensions, draw_labels, load_img
|
5 |
+
from yolov3 import load_image, load_yolo, detect_objects_yolo, get_box_dimensions_yolo, draw_labels_yolo
|
6 |
+
|
7 |
+
|
8 |
+
# Image Inference
|
9 |
+
|
10 |
+
def img_inf(img,model):
|
11 |
+
if model=="MobileNet-SSD":
|
12 |
+
model, classes, colors = load_model()
|
13 |
+
image, height, width, channels = load_img(img)
|
14 |
+
blob, outputs = detect_objects(image, model)
|
15 |
+
boxes, class_ids = get_box_dimensions(outputs, height, width)
|
16 |
+
image1 = draw_labels(boxes, colors, class_ids, classes, image)
|
17 |
+
return cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
|
18 |
+
else:
|
19 |
+
model, classes, colors, output_layers = load_yolo()
|
20 |
+
image, height, width, channels = load_image(img)
|
21 |
+
blob, outputs = detect_objects_yolo(image, model, output_layers)
|
22 |
+
boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width)
|
23 |
+
image=draw_labels_yolo(boxes, confs, colors, class_ids, classes, image)
|
24 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
25 |
+
|
26 |
+
|
27 |
+
model_name = gr.Radio(["MobileNet-SSD", "YOLOv3"], value="YOLOv3", label="Model", info="choose your model")
|
28 |
+
inputs_image = gr.Image(type="filepath", label="Input Image")
|
29 |
+
outputs_image = gr.Image(type="numpy", label="Output Image")
|
30 |
+
interface_image = gr.Interface(
|
31 |
+
fn=img_inf,
|
32 |
+
inputs=[inputs_image,model_name],
|
33 |
+
outputs=outputs_image,
|
34 |
+
title="Image Inference",
|
35 |
+
description="Upload your photo and select one model and see the results!",
|
36 |
+
examples=[["sample/dog.jpg"]],
|
37 |
+
cache_examples=False,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
# Video Inference
|
42 |
+
|
43 |
+
def vid_inf(vid, model_type):
|
44 |
+
if model_type == "MobileNet-SSD":
|
45 |
+
cap = cv2.VideoCapture(vid)
|
46 |
+
# get the video frames' width and height for proper saving of videos
|
47 |
+
frame_width = int(cap.get(3))
|
48 |
+
frame_height = int(cap.get(4))
|
49 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
50 |
+
frame_size = (frame_width, frame_height)
|
51 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
52 |
+
output_video = "output_recorded.mp4"
|
53 |
+
|
54 |
+
# create the `VideoWriter()` object
|
55 |
+
out = cv2.VideoWriter(output_video, fourcc, fps, frame_size)
|
56 |
+
|
57 |
+
model, classes, colors = load_model()
|
58 |
+
while cap.isOpened():
|
59 |
+
ret, frame = cap.read()
|
60 |
+
if ret:
|
61 |
+
height, width, channels = frame.shape
|
62 |
+
blob, outputs = detect_objects(frame, model)
|
63 |
+
boxes, class_ids = get_box_dimensions(outputs, height, width)
|
64 |
+
frame = draw_labels(boxes, colors, class_ids, classes, frame)
|
65 |
+
out.write(frame)
|
66 |
+
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),None
|
67 |
+
else:
|
68 |
+
break
|
69 |
+
|
70 |
+
cap.release()
|
71 |
+
out.release()
|
72 |
+
cv2.destroyAllWindows()
|
73 |
+
yield None, output_video
|
74 |
+
|
75 |
+
else:
|
76 |
+
cap = cv2.VideoCapture(vid)
|
77 |
+
# get the video frames' width and height for proper saving of videos
|
78 |
+
frame_width = int(cap.get(3))
|
79 |
+
frame_height = int(cap.get(4))
|
80 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
81 |
+
frame_size = (frame_width, frame_height)
|
82 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
83 |
+
output_video = "output_recorded.mp4"
|
84 |
+
|
85 |
+
# create the `VideoWriter()` object
|
86 |
+
out = cv2.VideoWriter(output_video, fourcc, fps, frame_size)
|
87 |
+
|
88 |
+
model, classes, colors, output_layers = load_yolo()
|
89 |
+
while cap.isOpened():
|
90 |
+
ret, frame_y = cap.read()
|
91 |
+
if ret:
|
92 |
+
height, width, channels = frame_y.shape
|
93 |
+
blob, outputs = detect_objects_yolo(frame_y, model, output_layers)
|
94 |
+
boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width)
|
95 |
+
frame_y = draw_labels_yolo(boxes, confs, colors, class_ids, classes, frame_y)
|
96 |
+
out.write(frame_y)
|
97 |
+
yield cv2.cvtColor(frame_y, cv2.COLOR_BGR2RGB), None
|
98 |
+
else:
|
99 |
+
break
|
100 |
+
|
101 |
+
cap.release()
|
102 |
+
out.release()
|
103 |
+
cv2.destroyAllWindows()
|
104 |
+
yield None, output_video
|
105 |
+
|
106 |
+
|
107 |
+
model_name = gr.Radio(["MobileNet-SSD", "YOLOv3"], value="YOLOv3", label="Model", info="choose your model")
|
108 |
+
input_video = gr.Video(sources=None, label="Input Video")
|
109 |
+
output_frame = gr.Image(type="numpy", label="Output Frames")
|
110 |
+
output_video_file = gr.Video(label="Output video")
|
111 |
+
|
112 |
+
|
113 |
+
interface_video = gr.Interface(
|
114 |
+
fn=vid_inf,
|
115 |
+
inputs=[input_video, model_name],
|
116 |
+
outputs=[output_frame,output_video_file],
|
117 |
+
title="Video Inference",
|
118 |
+
description="Upload your video and select one model and see the results!",
|
119 |
+
examples=[["sample/video_1.mp4"],["sample/person.mp4"]],
|
120 |
+
cache_examples=False,
|
121 |
+
)
|
122 |
+
|
123 |
+
gr.TabbedInterface(
|
124 |
+
[interface_image, interface_video],
|
125 |
+
tab_names=['Image', 'Video'],
|
126 |
+
title='GradioxOpenCV-DNN'
|
127 |
+
).queue().launch()
|
coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
frozen_inference_graph.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a8d8a89d695842e60d8c6d144181100555563e21acf2fa1e8f561fec5c3c6ad
|
3 |
+
size 69688296
|
mbnet.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
#import time
|
4 |
+
|
5 |
+
|
6 |
+
#video_path = 'D:/OfficeWork/VS_code_exp/exp/video_1.mp4'
|
7 |
+
#image_path = 'D:/OfficeWork/VS_code_exp/exp/test.jpg.jpg'
|
8 |
+
|
9 |
+
def load_model():
|
10 |
+
model= cv2.dnn.readNet(model='frozen_inference_graph.pb',
|
11 |
+
config='ssd_mobilenet_v2_coco_2018_03_29.pbtxt.txt',
|
12 |
+
framework='TensorFlow')
|
13 |
+
with open('object_detection_classes_coco.txt', 'r') as f:
|
14 |
+
class_names = f.read().split('\n')
|
15 |
+
COLORS = np.random.uniform(0, 255, size=(len(class_names), 3))
|
16 |
+
return model, class_names, COLORS
|
17 |
+
|
18 |
+
def load_img(img_path):
|
19 |
+
img=cv2.imread(img_path)
|
20 |
+
img=cv2.resize(img, None, fx=0.4, fy=0.4)
|
21 |
+
height, width, channels = img.shape
|
22 |
+
return img, height, width, channels
|
23 |
+
|
24 |
+
def detect_objects(img, net):
|
25 |
+
blob = cv2.dnn.blobFromImage(img, size=(300, 300), mean=(104, 117, 123), swapRB=True)
|
26 |
+
net.setInput(blob)
|
27 |
+
outputs = net.forward()
|
28 |
+
#print (outputs)
|
29 |
+
return blob, outputs
|
30 |
+
|
31 |
+
def get_box_dimensions(outputs, height, width):
|
32 |
+
boxes = []
|
33 |
+
class_ids = []
|
34 |
+
|
35 |
+
for detect in outputs[0,0,:,:]:
|
36 |
+
scores = detect[2]
|
37 |
+
class_id = detect[1]
|
38 |
+
if scores > 0.3:
|
39 |
+
center_x = int(detect[0] * width)
|
40 |
+
center_y = int(detect[1] * height)
|
41 |
+
w = int(detect[5] * width)
|
42 |
+
h = int(detect[6] * height)
|
43 |
+
x = int((detect[3] * width))
|
44 |
+
y = int((detect[4] * height))
|
45 |
+
boxes.append([x, y, w, h])
|
46 |
+
class_ids.append(class_id)
|
47 |
+
return boxes, class_ids
|
48 |
+
|
49 |
+
def draw_labels(boxes, colors, class_ids, classes, img):
|
50 |
+
font = cv2.FONT_HERSHEY_PLAIN
|
51 |
+
model, classes, colors = load_model()
|
52 |
+
for i in range(len(boxes)):
|
53 |
+
x, y, w, h = boxes[i]
|
54 |
+
label = classes[int(class_ids[0])-1]
|
55 |
+
color = colors[i]
|
56 |
+
cv2.rectangle(img, (x,y), (w,h), color, 5)
|
57 |
+
cv2.putText(img, label, (x, y - 5), font, 5, color, 5)
|
58 |
+
return img
|
59 |
+
|
60 |
+
def image_detect(img_path):
|
61 |
+
model, classes, colors = load_model()
|
62 |
+
image, height, width, channels = load_img(img_path)
|
63 |
+
blob, outputs = detect_objects(image, model)
|
64 |
+
boxes, class_ids = get_box_dimensions(outputs, height, width)
|
65 |
+
image1 = draw_labels(boxes, colors, class_ids, classes, image)
|
66 |
+
return image1
|
67 |
+
|
68 |
+
|
69 |
+
#def start_video(video_path):
|
70 |
+
model, classes, colors = load_model()
|
71 |
+
cap = cv2.VideoCapture(video_path)
|
72 |
+
while True:
|
73 |
+
_, frame = cap.read()
|
74 |
+
height, width, channels = frame.shape
|
75 |
+
blob, outputs = detect_objects(frame, model)
|
76 |
+
boxes, class_ids = get_box_dimensions(outputs, height, width)
|
77 |
+
frame=draw_labels(boxes, colors, class_ids, classes, frame)
|
78 |
+
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
79 |
+
|
80 |
+
cv2.destroyAllWindows()
|
object_detection_classes_coco.txt
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorcycle
|
5 |
+
airplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
street sign
|
13 |
+
stop sign
|
14 |
+
parking meter
|
15 |
+
bench
|
16 |
+
bird
|
17 |
+
cat
|
18 |
+
dog
|
19 |
+
horse
|
20 |
+
sheep
|
21 |
+
cow
|
22 |
+
elephant
|
23 |
+
bear
|
24 |
+
zebra
|
25 |
+
giraffe
|
26 |
+
hat
|
27 |
+
backpack
|
28 |
+
umbrella
|
29 |
+
shoe
|
30 |
+
eye glasses
|
31 |
+
handbag
|
32 |
+
tie
|
33 |
+
suitcase
|
34 |
+
frisbee
|
35 |
+
skis
|
36 |
+
snowboard
|
37 |
+
sports ball
|
38 |
+
kite
|
39 |
+
baseball bat
|
40 |
+
baseball glove
|
41 |
+
skateboard
|
42 |
+
surfboard
|
43 |
+
tennis racket
|
44 |
+
bottle
|
45 |
+
plate
|
46 |
+
wine glass
|
47 |
+
cup
|
48 |
+
fork
|
49 |
+
knife
|
50 |
+
spoon
|
51 |
+
bowl
|
52 |
+
banana
|
53 |
+
apple
|
54 |
+
sandwich
|
55 |
+
orange
|
56 |
+
broccoli
|
57 |
+
carrot
|
58 |
+
hot dog
|
59 |
+
pizza
|
60 |
+
donut
|
61 |
+
cake
|
62 |
+
chair
|
63 |
+
couch
|
64 |
+
potted plant
|
65 |
+
bed
|
66 |
+
mirror
|
67 |
+
dining table
|
68 |
+
window
|
69 |
+
desk
|
70 |
+
toilet
|
71 |
+
door
|
72 |
+
tv
|
73 |
+
laptop
|
74 |
+
mouse
|
75 |
+
remote
|
76 |
+
keyboard
|
77 |
+
cell phone
|
78 |
+
microwave
|
79 |
+
oven
|
80 |
+
toaster
|
81 |
+
sink
|
82 |
+
refrigerator
|
83 |
+
blender
|
84 |
+
book
|
85 |
+
clock
|
86 |
+
vase
|
87 |
+
scissors
|
88 |
+
teddy bear
|
89 |
+
hair drier
|
90 |
+
toothbrush
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-contrib-python
|
2 |
+
numpy
|
3 |
+
gradio
|
sample/dog.jpg
ADDED
sample/person.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46636187a6af45c1fe71b5b8e14d96eb64908f8b285f29bd194e9e9e66c0cb02
|
3 |
+
size 8497766
|
sample/video_1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4faf22572a0655605807476f3766e79be5b97bfdb55af020d6404e5561b9e122
|
3 |
+
size 1803408
|
ssd_mobilenet_v2_coco_2018_03_29.pbtxt.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
yolov3.cfg
ADDED
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
# Testing
|
3 |
+
# batch=1
|
4 |
+
# subdivisions=1
|
5 |
+
# Training
|
6 |
+
batch=64
|
7 |
+
subdivisions=16
|
8 |
+
width=608
|
9 |
+
height=608
|
10 |
+
channels=3
|
11 |
+
momentum=0.9
|
12 |
+
decay=0.0005
|
13 |
+
angle=0
|
14 |
+
saturation = 1.5
|
15 |
+
exposure = 1.5
|
16 |
+
hue=.1
|
17 |
+
|
18 |
+
learning_rate=0.001
|
19 |
+
burn_in=1000
|
20 |
+
max_batches = 500200
|
21 |
+
policy=steps
|
22 |
+
steps=400000,450000
|
23 |
+
scales=.1,.1
|
24 |
+
|
25 |
+
[convolutional]
|
26 |
+
batch_normalize=1
|
27 |
+
filters=32
|
28 |
+
size=3
|
29 |
+
stride=1
|
30 |
+
pad=1
|
31 |
+
activation=leaky
|
32 |
+
|
33 |
+
# Downsample
|
34 |
+
|
35 |
+
[convolutional]
|
36 |
+
batch_normalize=1
|
37 |
+
filters=64
|
38 |
+
size=3
|
39 |
+
stride=2
|
40 |
+
pad=1
|
41 |
+
activation=leaky
|
42 |
+
|
43 |
+
[convolutional]
|
44 |
+
batch_normalize=1
|
45 |
+
filters=32
|
46 |
+
size=1
|
47 |
+
stride=1
|
48 |
+
pad=1
|
49 |
+
activation=leaky
|
50 |
+
|
51 |
+
[convolutional]
|
52 |
+
batch_normalize=1
|
53 |
+
filters=64
|
54 |
+
size=3
|
55 |
+
stride=1
|
56 |
+
pad=1
|
57 |
+
activation=leaky
|
58 |
+
|
59 |
+
[shortcut]
|
60 |
+
from=-3
|
61 |
+
activation=linear
|
62 |
+
|
63 |
+
# Downsample
|
64 |
+
|
65 |
+
[convolutional]
|
66 |
+
batch_normalize=1
|
67 |
+
filters=128
|
68 |
+
size=3
|
69 |
+
stride=2
|
70 |
+
pad=1
|
71 |
+
activation=leaky
|
72 |
+
|
73 |
+
[convolutional]
|
74 |
+
batch_normalize=1
|
75 |
+
filters=64
|
76 |
+
size=1
|
77 |
+
stride=1
|
78 |
+
pad=1
|
79 |
+
activation=leaky
|
80 |
+
|
81 |
+
[convolutional]
|
82 |
+
batch_normalize=1
|
83 |
+
filters=128
|
84 |
+
size=3
|
85 |
+
stride=1
|
86 |
+
pad=1
|
87 |
+
activation=leaky
|
88 |
+
|
89 |
+
[shortcut]
|
90 |
+
from=-3
|
91 |
+
activation=linear
|
92 |
+
|
93 |
+
[convolutional]
|
94 |
+
batch_normalize=1
|
95 |
+
filters=64
|
96 |
+
size=1
|
97 |
+
stride=1
|
98 |
+
pad=1
|
99 |
+
activation=leaky
|
100 |
+
|
101 |
+
[convolutional]
|
102 |
+
batch_normalize=1
|
103 |
+
filters=128
|
104 |
+
size=3
|
105 |
+
stride=1
|
106 |
+
pad=1
|
107 |
+
activation=leaky
|
108 |
+
|
109 |
+
[shortcut]
|
110 |
+
from=-3
|
111 |
+
activation=linear
|
112 |
+
|
113 |
+
# Downsample
|
114 |
+
|
115 |
+
[convolutional]
|
116 |
+
batch_normalize=1
|
117 |
+
filters=256
|
118 |
+
size=3
|
119 |
+
stride=2
|
120 |
+
pad=1
|
121 |
+
activation=leaky
|
122 |
+
|
123 |
+
[convolutional]
|
124 |
+
batch_normalize=1
|
125 |
+
filters=128
|
126 |
+
size=1
|
127 |
+
stride=1
|
128 |
+
pad=1
|
129 |
+
activation=leaky
|
130 |
+
|
131 |
+
[convolutional]
|
132 |
+
batch_normalize=1
|
133 |
+
filters=256
|
134 |
+
size=3
|
135 |
+
stride=1
|
136 |
+
pad=1
|
137 |
+
activation=leaky
|
138 |
+
|
139 |
+
[shortcut]
|
140 |
+
from=-3
|
141 |
+
activation=linear
|
142 |
+
|
143 |
+
[convolutional]
|
144 |
+
batch_normalize=1
|
145 |
+
filters=128
|
146 |
+
size=1
|
147 |
+
stride=1
|
148 |
+
pad=1
|
149 |
+
activation=leaky
|
150 |
+
|
151 |
+
[convolutional]
|
152 |
+
batch_normalize=1
|
153 |
+
filters=256
|
154 |
+
size=3
|
155 |
+
stride=1
|
156 |
+
pad=1
|
157 |
+
activation=leaky
|
158 |
+
|
159 |
+
[shortcut]
|
160 |
+
from=-3
|
161 |
+
activation=linear
|
162 |
+
|
163 |
+
[convolutional]
|
164 |
+
batch_normalize=1
|
165 |
+
filters=128
|
166 |
+
size=1
|
167 |
+
stride=1
|
168 |
+
pad=1
|
169 |
+
activation=leaky
|
170 |
+
|
171 |
+
[convolutional]
|
172 |
+
batch_normalize=1
|
173 |
+
filters=256
|
174 |
+
size=3
|
175 |
+
stride=1
|
176 |
+
pad=1
|
177 |
+
activation=leaky
|
178 |
+
|
179 |
+
[shortcut]
|
180 |
+
from=-3
|
181 |
+
activation=linear
|
182 |
+
|
183 |
+
[convolutional]
|
184 |
+
batch_normalize=1
|
185 |
+
filters=128
|
186 |
+
size=1
|
187 |
+
stride=1
|
188 |
+
pad=1
|
189 |
+
activation=leaky
|
190 |
+
|
191 |
+
[convolutional]
|
192 |
+
batch_normalize=1
|
193 |
+
filters=256
|
194 |
+
size=3
|
195 |
+
stride=1
|
196 |
+
pad=1
|
197 |
+
activation=leaky
|
198 |
+
|
199 |
+
[shortcut]
|
200 |
+
from=-3
|
201 |
+
activation=linear
|
202 |
+
|
203 |
+
|
204 |
+
[convolutional]
|
205 |
+
batch_normalize=1
|
206 |
+
filters=128
|
207 |
+
size=1
|
208 |
+
stride=1
|
209 |
+
pad=1
|
210 |
+
activation=leaky
|
211 |
+
|
212 |
+
[convolutional]
|
213 |
+
batch_normalize=1
|
214 |
+
filters=256
|
215 |
+
size=3
|
216 |
+
stride=1
|
217 |
+
pad=1
|
218 |
+
activation=leaky
|
219 |
+
|
220 |
+
[shortcut]
|
221 |
+
from=-3
|
222 |
+
activation=linear
|
223 |
+
|
224 |
+
[convolutional]
|
225 |
+
batch_normalize=1
|
226 |
+
filters=128
|
227 |
+
size=1
|
228 |
+
stride=1
|
229 |
+
pad=1
|
230 |
+
activation=leaky
|
231 |
+
|
232 |
+
[convolutional]
|
233 |
+
batch_normalize=1
|
234 |
+
filters=256
|
235 |
+
size=3
|
236 |
+
stride=1
|
237 |
+
pad=1
|
238 |
+
activation=leaky
|
239 |
+
|
240 |
+
[shortcut]
|
241 |
+
from=-3
|
242 |
+
activation=linear
|
243 |
+
|
244 |
+
[convolutional]
|
245 |
+
batch_normalize=1
|
246 |
+
filters=128
|
247 |
+
size=1
|
248 |
+
stride=1
|
249 |
+
pad=1
|
250 |
+
activation=leaky
|
251 |
+
|
252 |
+
[convolutional]
|
253 |
+
batch_normalize=1
|
254 |
+
filters=256
|
255 |
+
size=3
|
256 |
+
stride=1
|
257 |
+
pad=1
|
258 |
+
activation=leaky
|
259 |
+
|
260 |
+
[shortcut]
|
261 |
+
from=-3
|
262 |
+
activation=linear
|
263 |
+
|
264 |
+
[convolutional]
|
265 |
+
batch_normalize=1
|
266 |
+
filters=128
|
267 |
+
size=1
|
268 |
+
stride=1
|
269 |
+
pad=1
|
270 |
+
activation=leaky
|
271 |
+
|
272 |
+
[convolutional]
|
273 |
+
batch_normalize=1
|
274 |
+
filters=256
|
275 |
+
size=3
|
276 |
+
stride=1
|
277 |
+
pad=1
|
278 |
+
activation=leaky
|
279 |
+
|
280 |
+
[shortcut]
|
281 |
+
from=-3
|
282 |
+
activation=linear
|
283 |
+
|
284 |
+
# Downsample
|
285 |
+
|
286 |
+
[convolutional]
|
287 |
+
batch_normalize=1
|
288 |
+
filters=512
|
289 |
+
size=3
|
290 |
+
stride=2
|
291 |
+
pad=1
|
292 |
+
activation=leaky
|
293 |
+
|
294 |
+
[convolutional]
|
295 |
+
batch_normalize=1
|
296 |
+
filters=256
|
297 |
+
size=1
|
298 |
+
stride=1
|
299 |
+
pad=1
|
300 |
+
activation=leaky
|
301 |
+
|
302 |
+
[convolutional]
|
303 |
+
batch_normalize=1
|
304 |
+
filters=512
|
305 |
+
size=3
|
306 |
+
stride=1
|
307 |
+
pad=1
|
308 |
+
activation=leaky
|
309 |
+
|
310 |
+
[shortcut]
|
311 |
+
from=-3
|
312 |
+
activation=linear
|
313 |
+
|
314 |
+
|
315 |
+
[convolutional]
|
316 |
+
batch_normalize=1
|
317 |
+
filters=256
|
318 |
+
size=1
|
319 |
+
stride=1
|
320 |
+
pad=1
|
321 |
+
activation=leaky
|
322 |
+
|
323 |
+
[convolutional]
|
324 |
+
batch_normalize=1
|
325 |
+
filters=512
|
326 |
+
size=3
|
327 |
+
stride=1
|
328 |
+
pad=1
|
329 |
+
activation=leaky
|
330 |
+
|
331 |
+
[shortcut]
|
332 |
+
from=-3
|
333 |
+
activation=linear
|
334 |
+
|
335 |
+
|
336 |
+
[convolutional]
|
337 |
+
batch_normalize=1
|
338 |
+
filters=256
|
339 |
+
size=1
|
340 |
+
stride=1
|
341 |
+
pad=1
|
342 |
+
activation=leaky
|
343 |
+
|
344 |
+
[convolutional]
|
345 |
+
batch_normalize=1
|
346 |
+
filters=512
|
347 |
+
size=3
|
348 |
+
stride=1
|
349 |
+
pad=1
|
350 |
+
activation=leaky
|
351 |
+
|
352 |
+
[shortcut]
|
353 |
+
from=-3
|
354 |
+
activation=linear
|
355 |
+
|
356 |
+
|
357 |
+
[convolutional]
|
358 |
+
batch_normalize=1
|
359 |
+
filters=256
|
360 |
+
size=1
|
361 |
+
stride=1
|
362 |
+
pad=1
|
363 |
+
activation=leaky
|
364 |
+
|
365 |
+
[convolutional]
|
366 |
+
batch_normalize=1
|
367 |
+
filters=512
|
368 |
+
size=3
|
369 |
+
stride=1
|
370 |
+
pad=1
|
371 |
+
activation=leaky
|
372 |
+
|
373 |
+
[shortcut]
|
374 |
+
from=-3
|
375 |
+
activation=linear
|
376 |
+
|
377 |
+
[convolutional]
|
378 |
+
batch_normalize=1
|
379 |
+
filters=256
|
380 |
+
size=1
|
381 |
+
stride=1
|
382 |
+
pad=1
|
383 |
+
activation=leaky
|
384 |
+
|
385 |
+
[convolutional]
|
386 |
+
batch_normalize=1
|
387 |
+
filters=512
|
388 |
+
size=3
|
389 |
+
stride=1
|
390 |
+
pad=1
|
391 |
+
activation=leaky
|
392 |
+
|
393 |
+
[shortcut]
|
394 |
+
from=-3
|
395 |
+
activation=linear
|
396 |
+
|
397 |
+
|
398 |
+
[convolutional]
|
399 |
+
batch_normalize=1
|
400 |
+
filters=256
|
401 |
+
size=1
|
402 |
+
stride=1
|
403 |
+
pad=1
|
404 |
+
activation=leaky
|
405 |
+
|
406 |
+
[convolutional]
|
407 |
+
batch_normalize=1
|
408 |
+
filters=512
|
409 |
+
size=3
|
410 |
+
stride=1
|
411 |
+
pad=1
|
412 |
+
activation=leaky
|
413 |
+
|
414 |
+
[shortcut]
|
415 |
+
from=-3
|
416 |
+
activation=linear
|
417 |
+
|
418 |
+
|
419 |
+
[convolutional]
|
420 |
+
batch_normalize=1
|
421 |
+
filters=256
|
422 |
+
size=1
|
423 |
+
stride=1
|
424 |
+
pad=1
|
425 |
+
activation=leaky
|
426 |
+
|
427 |
+
[convolutional]
|
428 |
+
batch_normalize=1
|
429 |
+
filters=512
|
430 |
+
size=3
|
431 |
+
stride=1
|
432 |
+
pad=1
|
433 |
+
activation=leaky
|
434 |
+
|
435 |
+
[shortcut]
|
436 |
+
from=-3
|
437 |
+
activation=linear
|
438 |
+
|
439 |
+
[convolutional]
|
440 |
+
batch_normalize=1
|
441 |
+
filters=256
|
442 |
+
size=1
|
443 |
+
stride=1
|
444 |
+
pad=1
|
445 |
+
activation=leaky
|
446 |
+
|
447 |
+
[convolutional]
|
448 |
+
batch_normalize=1
|
449 |
+
filters=512
|
450 |
+
size=3
|
451 |
+
stride=1
|
452 |
+
pad=1
|
453 |
+
activation=leaky
|
454 |
+
|
455 |
+
[shortcut]
|
456 |
+
from=-3
|
457 |
+
activation=linear
|
458 |
+
|
459 |
+
# Downsample
|
460 |
+
|
461 |
+
[convolutional]
|
462 |
+
batch_normalize=1
|
463 |
+
filters=1024
|
464 |
+
size=3
|
465 |
+
stride=2
|
466 |
+
pad=1
|
467 |
+
activation=leaky
|
468 |
+
|
469 |
+
[convolutional]
|
470 |
+
batch_normalize=1
|
471 |
+
filters=512
|
472 |
+
size=1
|
473 |
+
stride=1
|
474 |
+
pad=1
|
475 |
+
activation=leaky
|
476 |
+
|
477 |
+
[convolutional]
|
478 |
+
batch_normalize=1
|
479 |
+
filters=1024
|
480 |
+
size=3
|
481 |
+
stride=1
|
482 |
+
pad=1
|
483 |
+
activation=leaky
|
484 |
+
|
485 |
+
[shortcut]
|
486 |
+
from=-3
|
487 |
+
activation=linear
|
488 |
+
|
489 |
+
[convolutional]
|
490 |
+
batch_normalize=1
|
491 |
+
filters=512
|
492 |
+
size=1
|
493 |
+
stride=1
|
494 |
+
pad=1
|
495 |
+
activation=leaky
|
496 |
+
|
497 |
+
[convolutional]
|
498 |
+
batch_normalize=1
|
499 |
+
filters=1024
|
500 |
+
size=3
|
501 |
+
stride=1
|
502 |
+
pad=1
|
503 |
+
activation=leaky
|
504 |
+
|
505 |
+
[shortcut]
|
506 |
+
from=-3
|
507 |
+
activation=linear
|
508 |
+
|
509 |
+
[convolutional]
|
510 |
+
batch_normalize=1
|
511 |
+
filters=512
|
512 |
+
size=1
|
513 |
+
stride=1
|
514 |
+
pad=1
|
515 |
+
activation=leaky
|
516 |
+
|
517 |
+
[convolutional]
|
518 |
+
batch_normalize=1
|
519 |
+
filters=1024
|
520 |
+
size=3
|
521 |
+
stride=1
|
522 |
+
pad=1
|
523 |
+
activation=leaky
|
524 |
+
|
525 |
+
[shortcut]
|
526 |
+
from=-3
|
527 |
+
activation=linear
|
528 |
+
|
529 |
+
[convolutional]
|
530 |
+
batch_normalize=1
|
531 |
+
filters=512
|
532 |
+
size=1
|
533 |
+
stride=1
|
534 |
+
pad=1
|
535 |
+
activation=leaky
|
536 |
+
|
537 |
+
[convolutional]
|
538 |
+
batch_normalize=1
|
539 |
+
filters=1024
|
540 |
+
size=3
|
541 |
+
stride=1
|
542 |
+
pad=1
|
543 |
+
activation=leaky
|
544 |
+
|
545 |
+
[shortcut]
|
546 |
+
from=-3
|
547 |
+
activation=linear
|
548 |
+
|
549 |
+
######################
|
550 |
+
|
551 |
+
[convolutional]
|
552 |
+
batch_normalize=1
|
553 |
+
filters=512
|
554 |
+
size=1
|
555 |
+
stride=1
|
556 |
+
pad=1
|
557 |
+
activation=leaky
|
558 |
+
|
559 |
+
[convolutional]
|
560 |
+
batch_normalize=1
|
561 |
+
size=3
|
562 |
+
stride=1
|
563 |
+
pad=1
|
564 |
+
filters=1024
|
565 |
+
activation=leaky
|
566 |
+
|
567 |
+
[convolutional]
|
568 |
+
batch_normalize=1
|
569 |
+
filters=512
|
570 |
+
size=1
|
571 |
+
stride=1
|
572 |
+
pad=1
|
573 |
+
activation=leaky
|
574 |
+
|
575 |
+
[convolutional]
|
576 |
+
batch_normalize=1
|
577 |
+
size=3
|
578 |
+
stride=1
|
579 |
+
pad=1
|
580 |
+
filters=1024
|
581 |
+
activation=leaky
|
582 |
+
|
583 |
+
[convolutional]
|
584 |
+
batch_normalize=1
|
585 |
+
filters=512
|
586 |
+
size=1
|
587 |
+
stride=1
|
588 |
+
pad=1
|
589 |
+
activation=leaky
|
590 |
+
|
591 |
+
[convolutional]
|
592 |
+
batch_normalize=1
|
593 |
+
size=3
|
594 |
+
stride=1
|
595 |
+
pad=1
|
596 |
+
filters=1024
|
597 |
+
activation=leaky
|
598 |
+
|
599 |
+
[convolutional]
|
600 |
+
size=1
|
601 |
+
stride=1
|
602 |
+
pad=1
|
603 |
+
filters=255
|
604 |
+
activation=linear
|
605 |
+
|
606 |
+
|
607 |
+
[yolo]
|
608 |
+
mask = 6,7,8
|
609 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
610 |
+
classes=80
|
611 |
+
num=9
|
612 |
+
jitter=.3
|
613 |
+
ignore_thresh = .7
|
614 |
+
truth_thresh = 1
|
615 |
+
random=1
|
616 |
+
|
617 |
+
|
618 |
+
[route]
|
619 |
+
layers = -4
|
620 |
+
|
621 |
+
[convolutional]
|
622 |
+
batch_normalize=1
|
623 |
+
filters=256
|
624 |
+
size=1
|
625 |
+
stride=1
|
626 |
+
pad=1
|
627 |
+
activation=leaky
|
628 |
+
|
629 |
+
[upsample]
|
630 |
+
stride=2
|
631 |
+
|
632 |
+
[route]
|
633 |
+
layers = -1, 61
|
634 |
+
|
635 |
+
|
636 |
+
|
637 |
+
[convolutional]
|
638 |
+
batch_normalize=1
|
639 |
+
filters=256
|
640 |
+
size=1
|
641 |
+
stride=1
|
642 |
+
pad=1
|
643 |
+
activation=leaky
|
644 |
+
|
645 |
+
[convolutional]
|
646 |
+
batch_normalize=1
|
647 |
+
size=3
|
648 |
+
stride=1
|
649 |
+
pad=1
|
650 |
+
filters=512
|
651 |
+
activation=leaky
|
652 |
+
|
653 |
+
[convolutional]
|
654 |
+
batch_normalize=1
|
655 |
+
filters=256
|
656 |
+
size=1
|
657 |
+
stride=1
|
658 |
+
pad=1
|
659 |
+
activation=leaky
|
660 |
+
|
661 |
+
[convolutional]
|
662 |
+
batch_normalize=1
|
663 |
+
size=3
|
664 |
+
stride=1
|
665 |
+
pad=1
|
666 |
+
filters=512
|
667 |
+
activation=leaky
|
668 |
+
|
669 |
+
[convolutional]
|
670 |
+
batch_normalize=1
|
671 |
+
filters=256
|
672 |
+
size=1
|
673 |
+
stride=1
|
674 |
+
pad=1
|
675 |
+
activation=leaky
|
676 |
+
|
677 |
+
[convolutional]
|
678 |
+
batch_normalize=1
|
679 |
+
size=3
|
680 |
+
stride=1
|
681 |
+
pad=1
|
682 |
+
filters=512
|
683 |
+
activation=leaky
|
684 |
+
|
685 |
+
[convolutional]
|
686 |
+
size=1
|
687 |
+
stride=1
|
688 |
+
pad=1
|
689 |
+
filters=255
|
690 |
+
activation=linear
|
691 |
+
|
692 |
+
|
693 |
+
[yolo]
|
694 |
+
mask = 3,4,5
|
695 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
696 |
+
classes=80
|
697 |
+
num=9
|
698 |
+
jitter=.3
|
699 |
+
ignore_thresh = .7
|
700 |
+
truth_thresh = 1
|
701 |
+
random=1
|
702 |
+
|
703 |
+
|
704 |
+
|
705 |
+
[route]
|
706 |
+
layers = -4
|
707 |
+
|
708 |
+
[convolutional]
|
709 |
+
batch_normalize=1
|
710 |
+
filters=128
|
711 |
+
size=1
|
712 |
+
stride=1
|
713 |
+
pad=1
|
714 |
+
activation=leaky
|
715 |
+
|
716 |
+
[upsample]
|
717 |
+
stride=2
|
718 |
+
|
719 |
+
[route]
|
720 |
+
layers = -1, 36
|
721 |
+
|
722 |
+
|
723 |
+
|
724 |
+
[convolutional]
|
725 |
+
batch_normalize=1
|
726 |
+
filters=128
|
727 |
+
size=1
|
728 |
+
stride=1
|
729 |
+
pad=1
|
730 |
+
activation=leaky
|
731 |
+
|
732 |
+
[convolutional]
|
733 |
+
batch_normalize=1
|
734 |
+
size=3
|
735 |
+
stride=1
|
736 |
+
pad=1
|
737 |
+
filters=256
|
738 |
+
activation=leaky
|
739 |
+
|
740 |
+
[convolutional]
|
741 |
+
batch_normalize=1
|
742 |
+
filters=128
|
743 |
+
size=1
|
744 |
+
stride=1
|
745 |
+
pad=1
|
746 |
+
activation=leaky
|
747 |
+
|
748 |
+
[convolutional]
|
749 |
+
batch_normalize=1
|
750 |
+
size=3
|
751 |
+
stride=1
|
752 |
+
pad=1
|
753 |
+
filters=256
|
754 |
+
activation=leaky
|
755 |
+
|
756 |
+
[convolutional]
|
757 |
+
batch_normalize=1
|
758 |
+
filters=128
|
759 |
+
size=1
|
760 |
+
stride=1
|
761 |
+
pad=1
|
762 |
+
activation=leaky
|
763 |
+
|
764 |
+
[convolutional]
|
765 |
+
batch_normalize=1
|
766 |
+
size=3
|
767 |
+
stride=1
|
768 |
+
pad=1
|
769 |
+
filters=256
|
770 |
+
activation=leaky
|
771 |
+
|
772 |
+
[convolutional]
|
773 |
+
size=1
|
774 |
+
stride=1
|
775 |
+
pad=1
|
776 |
+
filters=255
|
777 |
+
activation=linear
|
778 |
+
|
779 |
+
|
780 |
+
[yolo]
|
781 |
+
mask = 0,1,2
|
782 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
783 |
+
classes=80
|
784 |
+
num=9
|
785 |
+
jitter=.3
|
786 |
+
ignore_thresh = .7
|
787 |
+
truth_thresh = 1
|
788 |
+
random=1
|
789 |
+
|
yolov3.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
#import argparse
|
4 |
+
#import time
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
#ideo_path = 'D:/OfficeWork/VS_code_exp/exp/video_1.mp4'
|
9 |
+
#image_path = 'D:\OfficeWork/VS_code_exp/exp/test.jpg.jpg'
|
10 |
+
|
11 |
+
|
12 |
+
#Load yolo
|
13 |
+
def load_yolo():
|
14 |
+
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
|
15 |
+
classes = []
|
16 |
+
with open("coco.names", "r") as f:
|
17 |
+
classes = [line.strip() for line in f.readlines()]
|
18 |
+
|
19 |
+
output_layers = [layer_name for layer_name in net.getUnconnectedOutLayersNames()]
|
20 |
+
colors = np.random.uniform(0, 255, size=(len(classes), 3))
|
21 |
+
return net, classes, colors, output_layers
|
22 |
+
|
23 |
+
def load_image(img_path):
|
24 |
+
# image loading
|
25 |
+
img = cv2.imread(img_path)
|
26 |
+
img = cv2.resize(img, None, fx=0.4, fy=0.4)
|
27 |
+
height, width, channels = img.shape
|
28 |
+
return img, height, width, channels
|
29 |
+
|
30 |
+
def start_webcam():
|
31 |
+
cap = cv2.VideoCapture(0)
|
32 |
+
|
33 |
+
return cap
|
34 |
+
|
35 |
+
|
36 |
+
def display_blob(blob):
|
37 |
+
'''
|
38 |
+
Three images each for RED, GREEN, BLUE channel
|
39 |
+
'''
|
40 |
+
for b in blob:
|
41 |
+
for n, imgb in enumerate(b):
|
42 |
+
cv2.imshow(str(n), imgb)
|
43 |
+
|
44 |
+
def detect_objects_yolo(img, net, outputLayers):
|
45 |
+
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False)
|
46 |
+
net.setInput(blob)
|
47 |
+
outputs = net.forward(outputLayers)
|
48 |
+
#output=np.ascontiguousarray(list(outputs))
|
49 |
+
#print(outputs)
|
50 |
+
#for i, out in enumerate(outputs):
|
51 |
+
# print(i, np.array(out).shape)
|
52 |
+
return blob, outputs
|
53 |
+
|
54 |
+
def get_box_dimensions_yolo(outputs, height, width):
|
55 |
+
boxes = []
|
56 |
+
confs = []
|
57 |
+
class_ids = []
|
58 |
+
for output in outputs:
|
59 |
+
for detect in output:
|
60 |
+
scores = detect[5:]
|
61 |
+
#print('detect', scores)
|
62 |
+
class_id = np.argmax(scores)
|
63 |
+
conf = scores[class_id]
|
64 |
+
if conf > 0.3:
|
65 |
+
center_x = int(detect[0] * width)
|
66 |
+
center_y = int(detect[1] * height)
|
67 |
+
w = int(detect[2] * width)
|
68 |
+
h = int(detect[3] * height)
|
69 |
+
x = int(center_x - w/2)
|
70 |
+
y = int(center_y - h / 2)
|
71 |
+
boxes.append([x, y, w, h])
|
72 |
+
#print(boxes)
|
73 |
+
confs.append(float(conf))
|
74 |
+
class_ids.append(class_id)
|
75 |
+
return boxes, confs, class_ids
|
76 |
+
|
77 |
+
def draw_labels_yolo(boxes, confs, colors, class_ids, classes, img):
|
78 |
+
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
|
79 |
+
font = cv2.FONT_HERSHEY_PLAIN
|
80 |
+
for i in range(len(boxes)):
|
81 |
+
if i in indexes:
|
82 |
+
x, y, w, h = boxes[i]
|
83 |
+
label = str(classes[class_ids[i]])
|
84 |
+
color = colors[i]
|
85 |
+
cv2.rectangle(img, (x,y), (x+w, y+h), color, 5)
|
86 |
+
cv2.putText(img, label, (x, y - 5), font, 5, color, 5)
|
87 |
+
return img
|
88 |
+
|
89 |
+
def image_detect_yolo(img_path):
|
90 |
+
model, classes, colors, output_layers = load_yolo()
|
91 |
+
image, height, width, channels = load_image(img_path)
|
92 |
+
blob, outputs = detect_objects_yolo(image, model, output_layers)
|
93 |
+
#print(outputs)
|
94 |
+
boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width)
|
95 |
+
image=draw_labels_yolo(boxes, confs, colors, class_ids, classes, image)
|
96 |
+
return image
|
97 |
+
'''while True:
|
98 |
+
key = cv2.waitKey(1)
|
99 |
+
if key == 27:
|
100 |
+
break'''
|
101 |
+
|
102 |
+
#def webcam_detect():
|
103 |
+
model, classes, colors, output_layers = load_yolo()
|
104 |
+
cap = start_webcam()
|
105 |
+
while True:
|
106 |
+
_, frame = cap.read()
|
107 |
+
height, width, channels = frame.shape
|
108 |
+
blob, outputs = detect_objects(frame, model, output_layers)
|
109 |
+
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
|
110 |
+
draw_labels(boxes, confs, colors, class_ids, classes, frame)
|
111 |
+
key = cv2.waitKey(1)
|
112 |
+
if key == 27:
|
113 |
+
break
|
114 |
+
cap.release()
|
115 |
+
|
116 |
+
|
117 |
+
#def start_video_yolo(video_path):
|
118 |
+
model, classes, colors, output_layers = load_yolo()
|
119 |
+
cap = cv2.VideoCapture(video_path)
|
120 |
+
while True:
|
121 |
+
_, frame = cap.read()
|
122 |
+
height, width, channels = frame.shape
|
123 |
+
blob, outputs = detect_objects_yolo(frame, model, output_layers)
|
124 |
+
boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width)
|
125 |
+
frame=draw_labels_yolo(boxes, confs, colors, class_ids, classes, frame)
|
126 |
+
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
127 |
+
'''key = cv2.waitKey(1)
|
128 |
+
if key == 27 :
|
129 |
+
break
|
130 |
+
cap.release()'''
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
cv2.destroyAllWindows()
|
yolov3.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:523e4e69e1d015393a1b0a441cef1d9c7659e3eb2d7e15f793f060a21b32f297
|
3 |
+
size 248007048
|