Spaces:
Runtime error
Runtime error
import torch | |
from transformers import pipeline | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from random import choice | |
import io | |
detector50 = pipeline(model="facebook/detr-resnet-50") | |
detector101 = pipeline(model="facebook/detr-resnet-101") | |
import gradio as gr | |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", | |
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", | |
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] | |
fdic = { | |
"family" : "Impact", | |
"style" : "italic", | |
"size" : 15, | |
"color" : "yellow", | |
"weight" : "bold" | |
} | |
def get_figure(in_pil_img, in_results): | |
# Convert PIL image to OpenCV format | |
img_cv2 = np.array(in_pil_img) | |
img_cv2 = cv2.cvtColor(img_cv2, cv2.COLOR_RGB2BGR) | |
for prediction in in_results: | |
selected_color = choice(COLORS) | |
color = tuple(int(selected_color[i:i+2], 16) for i in (1, 3, 5)) # Convert hex color to RGB tuple | |
x, y = prediction['box']['xmin'], prediction['box']['ymin'] | |
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin'] | |
# Draw bounding box using OpenCV | |
img_cv2 = cv2.rectangle(img_cv2, (x, y), (x+w, y+h), color, 2) | |
text = f"{prediction['label']}: {round(prediction['score']*100, 1)}%" | |
img_cv2 = cv2.putText(img_cv2, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2) | |
# Convert back to PIL format | |
img_pil = Image.fromarray(cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)) | |
return img_pil | |
def infer(model, in_pil_img): | |
results = None | |
if model == "detr-resnet-101": | |
results = detector101(in_pil_img) | |
else: | |
results = detector50(in_pil_img) | |
output_pil_img = get_figure(in_pil_img, results) | |
output_pil_img.save("output.jpg") | |
return output_pil_img | |
with gr.Blocks(title="DETR Object Detection using openCV", | |
css=".gradio-container {background:lightyellow;}" | |
) as demo: | |
#sample_index = gr.State([]) | |
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">ObjecTron🪄</div>""") | |
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;"> | |
A object detection app using OpenCV, Huggingface-transformers, detr-resnet and Gradio </div>""") | |
gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""") | |
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name") | |
gr.HTML("""<br/>""") | |
gr.HTML("""<h4 style="color:navy;">2-a. Select an example below</h4>""") | |
gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""") | |
with gr.Row(): | |
input_image = gr.Image(label="Input image", type="pil") | |
output_image = gr.Image(label="Output image with predicted instances", type="pil") | |
gr.Examples(['samples/god.jpg','samples/road.jpg','samples/cats.jpg','samples/detectron.png','samples/dogandcat.jpg'], inputs=input_image) | |
gr.HTML("""<br/>""") | |
gr.HTML("""<h4 style="color:navy;">3. Then, click the button below to predict and see the magic!!!</h4>""") | |
send_btn = gr.Button("Expecto Patronum 🪄") | |
send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image]) | |
gr.HTML("""<br/>""") | |
gr.HTML("""<h4 style="color:navy;">Reference</h4>""") | |
gr.HTML("""<ul>""") | |
gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR by facebookresearch</a>""") | |
gr.HTML("""</ul>""") | |
#demo.queue() | |
demo.launch(debug=True) |