File size: 4,243 Bytes
9b5c19b
 
 
 
 
 
 
 
 
c71fe3b
9b5c19b
 
 
cf4cf06
 
9b5c19b
 
 
 
 
 
cf4cf06
9b5c19b
 
 
 
 
 
 
 
 
cf4cf06
 
 
 
 
ce2bbd6
cf4cf06
ce2bbd6
cf4cf06
 
 
 
 
 
 
 
9b5c19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4cf06
9b5c19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Import required libraries
import PIL
import cv2
import streamlit as st
from ultralytics import YOLO
import tempfile


# Replace the relative path to your weight file
model_path = 'https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/blob/main/best.pt'

# Setting page layout
st.set_page_config(
    page_title="WildfireWatch",  # Setting page title
    page_icon="🔥",     # Setting page icon
    layout="wide",      # Setting layout to wide
    initial_sidebar_state="expanded"    # Expanding sidebar by default
)

# Creating sidebar
with st.sidebar:
    st.header("IMAGE/VIDEO UPLOAD")     # Adding header to sidebar
    # Adding file uploader to sidebar for selecting images and videos
    source_file = st.file_uploader(
        "Choose an image or video...", type=("jpg", "jpeg", "png", 'bmp', 'webp', 'mp4'))

    # Model Options
    confidence = float(st.slider(
        "Select Model Confidence", 25, 100, 40)) / 100

# Creating main page heading
st.title("WildfireWatch: Detecting Wildfire using AI")

# Adding informative pictures and description about the motivation for the app
col1, col2 = st.columns(2)
with col1:
    st.image("https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/Fire_1.jpeg", use_column_width=True)
with col2:
    st.image("https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/Fire_2.jpeg", use_column_width=True)

st.markdown("""
    Wildfires are a major environmental issue, causing substantial losses to ecosystems, human livelihoods, and potentially leading to loss of life. Early detection of wildfires can prevent these losses. Our application, WildfireWatch, uses state-of-the-art YOLOv8 model for real-time wildfire and smoke detection in images and videos.
""")

st.markdown("---")  # Adding a horizontal line

st.header("Let's Detect Wildfire")

# Creating two columns on the main page
col1, col2 = st.columns(2)

# Adding image to the first column if image is uploaded
with col1:
    if source_file:
        # Check if the file is an image
        if source_file.type.split('/')[0] == 'image':
            # Opening the uploaded image
            uploaded_image = PIL.Image.open(source_file)
            # Adding the uploaded image to the page with a caption
            st.image(source_file,
                     caption="Uploaded Image",
                     use_column_width=True
                     )
        else:
            tfile = tempfile.NamedTemporaryFile(delete=False) 
            tfile.write(source_file.read())
            vidcap = cv2.VideoCapture(tfile.name)

try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(
        f"Unable to load model. Check the specified path: {model_path}")
    st.error(ex)

if st.sidebar.button('Let\'s Detect Wildfire'):
    if source_file.type.split('/')[0] == 'image':
        res = model.predict(uploaded_image,
                            conf=confidence
                            )
        boxes = res[0].boxes
        res_plotted = res[0].plot()[:, :, ::-1]
        with col2:
            st.image(res_plotted,
                     caption='Detected Image',
                     use_column_width=True
                     )
            try:
                with st.expander("Detection Results"):
                    for box in boxes:
                        st.write(box.xywh)
            except Exception as ex:
                st.write("No image is uploaded yet!")
    else:
        # Open the video file
        success, image = vidcap.read()
        while success:
            res = model.predict(image,
                                conf=confidence
                                )
            boxes = res[0].boxes
            res_plotted = res[0].plot()[:, :, ::-1]
            with col2:
                st.image(res_plotted,
                         caption='Detected Frame',
                         use_column_width=True
                         )
                try:
                    with st.expander("Detection Results"):
                        for box in boxes:
                            st.write(box.xywh)
                except Exception as ex:
                    st.write("No video is uploaded yet!")
            success, image = vidcap.read()